HomeAbout JournalEditorial BoardSubscriptionsContacts UsCHINESE
Home >> MagazineArticle
Current Status and Future Prospects of Research on…
Author:YANGMing1 2 WANGShengping1 2 ZHANGYunfeng1 2 HANBo1 2 WUJinping1 2 CHENGHansong1 2 
Keyword:hydrogen energy  hydrogen storage materials  current status 
Year,volume(Issue):page number:2011,39(7):15-22

Hydrogen is capable of providing highly stable, efficient and pollution-free power. Its potential application in onboard automotive industry and stationary power generation is promising. However, there are several challenging issues for contemporary hydrogen technologies, i.e., large-scale hydrogen production, hydrogen storage and delivery at near ambient conditions, etc. Hydrogen infrastructure and storage technologies play key roles in the incipient hydrogen economy. The existing storage technologies are physical storage, physical adsorption, hydrides of light metal alloys, complex chemical hydrides, etc.. The advantages and disadvantages of these technologies were briefly reviewed and the prospects of future research and development in this area were discussed. For hydrogen storage materials, future research efforts would focus on high reversibility, high capacity, efficient hydrogenation at a large scale, storage and delivery under near ambient conditions and controllable dehydrogenation under mild conditions.

read wifes cheat reasons wives cheat on their husbands
read cheat on husband signs of infidelity
why do wife cheat on husband why wifes cheat how to cheat wife
open open My husband cheated on me
amoxicillin amoxicillin amoxicillin
Foundation item:
About The Author:
redirect go why women cheat on men they love
read percentage of women who cheat signs of infidelity
why do wife cheat on husband why wifes cheat how to cheat wife
open open My husband cheated on me
cialis coupon cialis coupon cialis coupon
sumatriptan side effects sumatriptan side effects sumatriptan side effects

[1] DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single-walled carbon nanotubes [J]. Nature, 1997, 386 (6623): 377-379. [2] CHEN P, WU X, LIN J, et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J]. Science, 1999, 285(5424): 91-93. [3] CHENG H M, YANG Q H, LIU C. Hydrogen storage in carbon nanotubes [J]. Carbon, 2001, 39(10): 1447-1454. [4] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes - the route toward applications [J]. Science, 2002, 297(5582): 787-792. [5] BUCZEK B, CZEPIRSKI L. Hydrogen storage by adsorption on active carbon [C]// Chen K ed. Energy and Environment, 2003, 1/2: 1042- 1046. [6] BUCZEK B, CZEPIRSKI L, ZIETKIEWICZ J. Improvement of hydrogen storage capacity for active carbon [J]. Adsorption, 2005, 11: 877-880. [7] WEITKAMP J, FRITZ M, ERNST S. Zeolites as media for hydrogen storage [J]. Int J Hydrogen Energy, 1995, 20(12): 967-970. [8] NIJKAMP M G, RAAYMAKERS J E M J, VAN DILLEN A J, et al. Hydrogen storage using physisorption-materials demands [J]. Appl Phys A-Mater, 2001, 72(5): 619-623. [9] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(6759): 276-279. [10] ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science, 2003, 300(5622): 1127-1129. [11] ZALUSKA A, ZALUSKI L, STROM-OLSEN J O. Nanocrystalline magnesium for hydrogen storage [J]. J Alloy Compd, 1999, 288(1/2): 217-225. [12] CHEN Z, TIAN C, PANG H, et al. Rehydrogenation performance of an MgH2-Nb2O5 system modified by heptane and acetone [J]. Int J Hydrogen Energy, 2010, 35(15): 8289-8294. [13] TANAKA K, KIYOBAYASHI T, TAKEICHI N, et al. Micro/Nano- Structures and Hydrogen Absorption/Desorption Properties of Mg/Cu Super-Laminates [M]// Chandra T, et al. ed. Thermec 2009, Pts 1-4. Stafa-Zurich: Trans Tech Publications Ltd, 2010: 1143-1147. [14] YE S Y, CHAN S L I, OUYANG L Z, et al. Hydrogen storage and structure variation in Mg/Pd multi-layer film [J]. J Alloy Compd, 2010, 504(2): 493-497. [15] LUO Q, AN X H, PAN Y B, et al. The hydriding kinetics of Mg-Ni based hydrogen storage alloys: A comparative study on Chou model and Jander model [J]. Int J Hydrog Energy, 2010, 35(15): 7842-7849. [16] CHO Y, DAHLE A K. Characterization of hydrogen sorption properties and microstructure of cast Mg-10wt%Ni alloys [M]. Zurich: Trans Tech Publications Ltd, 2010: 1085-1090. [17] REVESZ A, KANYA Z, VEREBELYI T, et al.The effect of high- pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30 [J]. J Alloy Compd, 2010, 504(1): 83-88. [18] KWON S N, MUMM D R, PARK H R, et al. Effects of transition metal oxide and Ni addition on the hydrogen-storage properties of Mg [J]. J Mater Sci, 2010, 45(19): 5164-5170. [19] ZHANG Y H, LI B W, REN H P, et al. Hydrogen Storage Behaviours of Nanocrystalline and Amorphous Mg20-xLaxNi10 (x = 0-6) Hydrogen Storage Alloys [J]. Rare Metal Mat Eng, 2010, 39(8): 1317-1322. [20] MENG J, PAN Y B, LUO Q, et al.A comparative study on effect of microwave sintering and conventional sintering on properties of Nd-Mg-Ni-Fe3O4 hydrogen storage alloy [J]. Int J Hydrog Energy, 2010, 35(15): 8310-8316. [21] CUEVAS F, FERNANDEZ J F, ARES J R, et al. Homogeneity range and crystal structure of Ni substituted Mg-6(Pd,Ni) complex intermetallic compounds [J]. J Phys Chem Solids, 2010, 71(9): 1259-1263. [22] HUANG L W, ELKEDIM O, JARZEBSKI M, et al. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1-xMnx (x = 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying [J]. Int J Hydrog Energy, 2010, 35(13): 6794-6803. [23] ZZLUSKA A, ZALUSKI L, STROM-OLSEN J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni [J]. J Alloy Compd, 1999, 289(1-2): 197-206. [24] HU L, HAN S M, YANG C, et al. Phase Structure and Hydrogen Storage Property of LaMg2Cu1-xNix (x = 0 similar to 0.90) Alloys [J]. Chin J Inorg Chem, 2010, 26(6): 1044-1048. [25] YUKAWA H, TAKAHASHI Y, MORINAGA M. Electronic structures of hydrogen storage compound, TiFe [J]. Comput Mater Sci, 1999, 14(1-4): 291-294. [26] CHIANG C H, CHIN Z H, PERNG T P. Hydrogenation of TiFe by high-energy ball milling [J]. J Alloy Compd, 2000, 307: 259-265. [27] KUDO A, SEKIZAWA M. PHOTOCATALYTIC H-2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst [J]. Chem Commun, 2000(15): 1371-1372. [28] FINHOLT A E, JACOBSON E C, OGARD A E, et al. Organic Reductions by Sodium Aluminum Hydride [J]. J Am Chem Soc, 1955, 77(15): 4163-4163. [29] BOGDANOVI B, SCHWICKARDI M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials [J]. J Alloy Compd, 1997, 253-254: 1-9. [30] KANG X D, WANG P, CHENG H M. Improving hydrogen storage performance of NaAlH4 by novel two-step milling method [J]. J Phys Chem C, 2007, 111(12): 4879-4884. [31] FINHOLT A E, BOND A C, SCHLESINGER H I. Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry1 [J]. J Am Chem Soc, 1947, 69(5): 1199-1203. [32] IOSUB V, MATSUNAGA T, TANGE K, et al. Direct synthesis of Mg(AlH4)(2) and CaAlH5 crystalline compounds by ball milling and their potential as hydrogen storage materials [J]. Int J Hydrogen Energy, 2009, 34(2): 906-912. [33] JAMES B D, WALLBRIDGE M G H. Metal Tetrahydroborates [C]// ed. Progress in Inorganic Chemistry. John Wiley & Sons, Inc. 2007: 99-231. [34] KOJIMA Y, HAGA T. Recycling process of sodium metaborate to sodium borohydride [J]. Int J Hydrogen Energy, 2003, 28(9): 989-993. [35] SCHLESINGER H I, BROWN H C, FINHOLT A E, et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1 [J]. J Am Chem Soc, 1953, 75(1): 215-219. [36] KONOPLEV V N. Synthesis of magnesium tetrahydridoborate [J]. Russ J Inorg Chem, 1980, 27(7): 964-966. [37] CHLOPEK K, FROMMEN C, LEON A, et al. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)(2) [J]. J Mater Chem, 2007, 17(33): 3496-3503. [38] CHEN P, XIONG Z T, LUO J Z, et al. Interaction of hydrogen with metal nitrides and imides [J]. Nature, 2002, 420(6913): 302-304. [39] HU Y H, RUCKENSTEIN E. Ultrafast reaction between LiH and NH3 during H2 storage in Li3N [J]. J Phys Chem A, 2003, 107(46): 9737- 9739. [40] CHEN P, XIONG Z, LUO J, et al. Interaction between lithium amide and lithium hydride [J]. J Phys Chem B, 2003, 107(39): 10967- 10970. [41] PENG B, CHEN J. Ammonia borane as an efficient and lightweight hydrogen storage medium [J]. Energy Environ Sci, 2008, 1(4): 479- 483. [42] SHORE S G, BODDEKER K W. Large scale synthesis of H2B(NH3)2+? BH4- and H3NBH3 [J]. Inorg Chem, 1964, 3(6): 914-915. [43] RAMACHANDRAN P V, GAGARE P D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration [J]. Inorg Chem, 2007, 46(19): 7810-7817. [44] DIXON D A, GUTOWSKI M. Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory [J]. J Phys Chem A, 2005, 109(23): 5129-5135. [45] ZHANG J G, ZHANG S W, LI Q S. DFT and ab initio direct dynamics study on the reaction of H-2 loss reaction from H2BNH2 [J]. J Mol Struc-Theochem, 2005, 717(1-3): 33-39. [46] LI Q S, ZHANG J G, ZHANG S W. A DFT and ab initio direct dynamics study on the hydrogen abstract reaction of H3BNH3 -> H2+H2BNH2 [J]. Chem Phys Lett, 2005, 404(1-3): 100-106. [47] NGUYEN V S, MATUS M H, GRANT D J, et al. Computational study of the release of H2 from ammonia borane dimer (BH3NH3)2 and its ion pair isomers [J]. J Phys Chem A, 2007, 111(36): 8844-8856. [48] SIT V, GEANANGEL R A, WENDLANDT W W. The thermal- dissociation of Nh3bh3 [J]. Thermochim Acta, 1987, 113: 379-382. [49] CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts [J]. J Power Sources, 2007, 168(1): 135-142. [50] SULTAN O, SHAW H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers [J]. NASA STI/Recon Technical Report N, 1975, 76: 33642-33645. [51] GRANT A W, NGO L T, STEGELMAN K, et al. Cyclohexane dehydrogenation and H-2 adsorption on Pt particles on ZnO(0001)-O [J]. J Phys Chem B, 2003, 107(5): 1180-1188. [52] ARAMENDIA M A, BENITEZ J A, BORAU V, et al. Dehydrogenation of cyclohexane over Pt/SiO2-AlPO4 catalysts 1. Influence of the catalyst particle size [J]. React Kinet Catal L, 1997, 62(1): 23-31. [53] ARAMENDIA M A, BORAU V, JIMENEZ C, et al. Dehydrogenation of Cyclohexane over Pd/SiO2-AlPO4 Catalysts 1. Influence of the Catalyst Particle-Size [J]. React Kinet Catal L, 1995, 54(2): 255-263. [54] COUGHLAN B, KEANE M A. The catalytic hydrogenation of cyclohexane and methylcyclohexane over nickel loaded Y zeolites [J]. Catal Lett, 1990, 5: 12. [55] KARIYA N, FUKUOKA A, ICHIKAWA M. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under "wet-dry multiphase conditions" [J]. Appl Catal a-Gen, 2002, 233(1-2): 91-102. [56] HODOSHIMA S, ARAI H, SAITO Y. Liquid-film-type catalytic decalin dehydrogeno-aromatization for long-term storage and long- distance transportation of hydrogen [J]. Int J Hydrogen Energy, 2003, 28(2): 197-204. [57] HODOSHIMA S, ARAI H, TAKAIWA S, et al. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle [J]. Int J Hydrogen Energy, 2003, 28(11): 1255- 1262. [58] PEZ P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, US200402- 23907. 2004-11-11 [59] CHENG H S, PAREKH V S, MITCHELL J W, et al. Density functional calculations of thermochemical equilibria [J]. J Phys Chem A, 1998, 102(9): 1568-1575. [60] PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, WO 2005/000457 A2. 2005-01-06. [61] PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, US7101- 530. 2006-09-05. [62] PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, US7351395. 2006-09-05. [63] PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, US7429- 372. 2008-09-30. [64] PEZ G P, SCOTT A R, COOPER A C, et al. Hydrogen storage reversible hydrogenated of pi-conjugated substrates [P]. US Patent, US20050002- 857. 2005-01-06. [65] PEZ G P, SCOTT A R, COOPER A C, et al. Autothermal hydrogen storage and delivery systems [P]. US Patent, US20080260630. 2008- 10-23. [66] MOORES A, POYATOS M, LUO Y, et al. Catalysed low temperature H-2 release from nitrogen heterocycles [J]. New J Chem, 2006, 30(11): 1675-1678. [67] EBLAGON K M, RENTSCH D, FRIEDRICHS O, et al. Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier [J]. Int J Hydrogen Energy, 2010, 35(20): 11609-11621. [68] CLOT E, EISENSTEIN O, CRABTREE R H. Computational structure-activity relationships in H-2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials [J]. Chem Commun, 2007(22): 2231-2233. [69] CRAWFORD P, BURCH R, HARDACRE C, et al. Understanding the dehydrogenation mechanism of tetrahydrocarbazole over palladium using a combined experimental and density functional theory approach [J]. J Phys Chem C, 2007, 111(17): 6434-6439. [70] CRABTREE R H. Hydrogen storage in liquid organic heterocycles [J]. Energy Environ Sci, 2008, 1(1): 134-138. [71] CRAWFORD P, BURCH R, HARDACRE C, et al. The energetics of tetrahydrocarbazole aromatization over Pd(111): A computational analysis [J]. J Chem Phys, 2008, 128(10): . [72] SEBASTIAN D, BORDEIE E G, CALVILLO L, et al. Hydrogen storage by decalin dehydrogenation/naphthalene hydrogenation pair over platinum catalysts supported on activated carbon [J]. Int J Hydrogen Energy, 2008, 33(4): 1329-1334. [73] LU R F, BOETHIUS G, WEN S H, et al. Improved organic hydrogen carriers with superior thermodynamic properties [J]. Chem Commun, 2009(13): 1751-1753. [74] MAKOWSKI P, THOMAS A, KUHN P, et al. Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules [J]. Energy Environ Sci, 2009, 2(5): 480-490. [75] SOTOODEH F, ZHAO L, SMITH K J. Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst [J]. Appl Catal a-Gen, 2009, 362(1-2): 155-162. [76] WANG Z H, TONKS I, BELLI J, et al. Dehydrogenation of N-ethyl perhydrocarbazole catalyzed by PCP pincer iridium complexes: Evaluation of a homogenous hydrogen storage system [J]. J Organomet Chem, 2009, 694(17): 2854-2857. [77] YAMAGUCHI R, IKEDA C, TAKAHASHI Y, et al. Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species [J]. J Am Chem Soc, 2009, 131(24): 8410- . [78] ZHAO H Y, OYAMA S T, NAEEMI E D. Hydrogen storage using heterocyclic compounds: The hydrogenation of 2-methylthiophene [J]. Catal Today, 2010, 149(1/2): 172-184. [79] HINDLE K T, Burch R, Crawford P, et al. Dramatic liquid-phase dehydrogenation rate enhancements using gas-phase hydrogen acceptors [J]. J Catal, 2007, 251(2): 338-344. [80] ZHOU L M, FU H Y, LI Q A, et al. Preparation of highly dispersed Ru/MMT catalyst and its catalytic activity for quinoline hydrogenation [J]. Chin J Catal, 2010, 31(6): 695-700. [81] CUI Y, KWOK S, BUCHOLTZ A, et al. The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage [J]. New J Chem, 2008, 32(6): 1027-1037. [82] YE X, AN Y, XU G. Kinetics of 9-ethylcarbazole hydrogenation over Raney-Ni catalyst for hydrogen storage [J]. J Alloy Compd, 2011, 509(1): 152-156. [83] SOTOODEH F, SMITH K J. Kinetics of hydrogen uptake and release from heteroaromatic compounds for hydrogen storage [J]. Ind Eng Chem Res, 2010, 49(3): 1018-1026. [84] THANSANDOTE P, RAEMY M, RUDOLPH A, et al. Synthesis of benzannulated N-heterocycles by a palladium-catalyzed C-C/C-N coupling of bromoalkylamines [J]. Org Lett, 2007, 9(25): 5255-5258. [85] THANSANDOTE P, LAUTENS M. Construction of nitrogen-containing heterocycles by C-H bond functionalization [J]. Chem Eur J, 2009, 15(24): 5874-5883. [86] BOEHMER I K, ALT H G. Influence of triphenylphosphine on the activity of heterogeneous iridium, rhodium and platinum containing catalysts for the dehydrogenation of saturated hydrocarbons [J]. J Organomet Chem, 2009, 694(7-8): 1001-1010. [87] ZHU K M, ACHORD P D, ZHANG X W, et al. Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT calculations of relevant thermodynamic, kinetic, and spectroscopic properties [J]. J Am Chem Soc, 2004, 126(40): 13044-13053. [88] TAUBMANN S, ALT H G. Catalytic dehydrogenation of cyclooctane with neutral iridium(I) complexes [J]. J Organomet Chem, 2008, 693(10): 1808-1814.

redirect go why women cheat on men they love
read why people cheat in relationships signs of infidelity
cialis discount coupons cialis 2015 coupon
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831