HomeAbout JournalEditorial BoardSubscriptionsContacts UsCHINESE
Home >> MagazineArticle
Recent Development on Theoretical Model of Carbona…
Author:HANJiande1 2 SUNWei1 2 PANGanghua1 2 
Unit:1. School of Materials Science and Engineering  Southeast University  Nanjing 211189  China  2. Jiangsu Key 
Keyword:concrete  carbonation reaction  theoretical model  carbon 
Classification:TU528
Year,volume(Issue):page number:2012,40(8):1143-1153
Summary:

Abstract: Carbonation reaction can accelerate the corrosion of steel bar and reduce the service life of reinforce concrete. The problem of carbonation reaction has been thus an interesting aspect in fields of civil engineering materials. The existing models were classified and the latest theoretical models were reviewed. Also, the latest model parameters (i.e., transport coefficient of CO2, porosity, saturation, chemical reaction rate, pH value and carbonation depth, etc.) were analyzed in details. In addition, the solving methods of theoretical models and the corresponding further studies were proposed.

why women cheat on husbands wife affair link
redirect i dreamed my wife cheated on me unfaithful husband
read click link
read cheat on husband signs of infidelity
doxycycline doxycycline doxycycline
Foundation item:
国家“973”计划“环境友好现代混凝土的基础研究”(2009- CB623200);国家自然科学基金(51178103);东南大学优秀博士学位论文基金(YBJJ1113)资助项目。
About The Author:
第一作者:韩建德(1983—),男,博士研究生。 通信作者:孙 伟(1935—),女,教授,中国工程院院士。
online read here open
References:

参考文献:
[1]  YOON I S, COPUROGLU O, PARK K B. Effect of global climatic change on carbonation progress of concrete [J]. Atmos Environ, 2007, 41(34): 7274–7285.
[2]  WANG X M, NGUYEN M, SYME M, et al. Analysis of climate change impacts on the deterioration of concrete infrastructure [R]. CSIRO, Canberra, 2010.
[3]  JONES M R, DHIR R K, MAGEE B J. Concrete containing ternary blended binders resistance to chloride ingress and carbonation [J]. Cem Concr Res, 1997, 27(6): 825–831.
[4]  YOUNSI A, TURCRY P, ROZIERE E, et al. Performance-based design and carbonation of concrete with high fly ash content [J]. Cem Concr Compos, 2011, 33(10): 993–1000.
[5]  ZHANG X, WU K, YAN A. Carbonation property of hardened binder pastes containing super-pulverized blast-furnace slag [J]. Cem Concr Compos, 2004, 26(4): 371–374.
[6]  KULAKOWSKI M P, PEREIRA F M, DENISE C C, et al. Carbonation-induced reinforcement corrosion in silica fume concrete [J]. Construct Build Mater, 2009, 23(3): 1189–1195.
[7]  ATIS C D. Accelerated carbonation and testing of concrete made with fly ash [J]. Construct Build Mater, 2003, 17(3): 147–152.
[8]  RUKZON S, CHINDAPRASIRT P. Strength and carbonation model of rice husk ash cement mortar with different fineness [J]. J Mater Civ Eng, 2010, 22(3): 253–259.
[9]  GASTALDINI A L G, ISAIA G C, GOMES N S, et al. Chloride penetration and carbonation in concrete with rice husk ash and chemical activators [J]. Cem Concr Compos, 2007, 29(3): 176–180.
[10]  SULAPHA P, WONG S F, WEE T H, et al. Carbonation of concrete containing mineral admixtures [J]. J Mater Civ Eng, 2003, 15(2): 134–143.
[11]  ATIS C D. Carbonation-porosity-strength model for fly ash concrete [J]. J Mater Civ Eng, 2003, 16(1): 91–94.
[12]  MONKMAN S, SHAO Y X. Assessing the carbonation behavior of cementitious materials [J]. JJ Mater Civ Eng, 2003, 18(6): 768–776.
[13]  CHINDAPRASIRT P, RUKZON S. Pore structure changes of blended cement pastes containing fly ash, rice husk ash, and palm oil fuel ash caused by carbonation [J]. J Mater Civ Eng, 2009, 21(11): 666–671.
[14]  MCPOLIN D O, BASHEER P A M, LONG A E. Carbonation and pH in mortars manufactured with supplementary cementitious materials [J]. J Mate Civil Eng, 2002, 21(5): 217–225.
[15]  MCPOLIN D O, BASHEER P A M, LONG A E, et al. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials [J]. J Mater Civ Eng, 2007, 19(11): 936–946.
[16]  DAS B B, PANDEY S P. Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete [J]. J Mater Civ Eng, 2007, 23(9): 1365–1368.
[17]  阿列克谢耶夫. 钢筋混凝土结构中钢筋锈蚀与保护[M]. 黄可信等译. 北京: 中国建筑工业出版社, 1983: 78–91.
E Alekseyev. Reinforcement corrosion and protection in Reinforced concrete structure (in Chinese). HUANG Kexin et al, transl. Beijing: China Building Industry Press, 1983: 78–91.
[18]  PAPADAKIS V G, VAYENAS C G, FARDIS M N. A reaction engineering approach to the problem of concrete carbonation [J]. AIChE J, 1989, 35(10): 1639–1650.
[19]  PAPADAKIS V G, VAYENAS C G. Experimental investigation and mathematical modeling of the concrete carbonation problem [J]. Chem Eng Sci, 1991, 46(5/6): 1333–1338.
[20]  PAPADAKIS V G, VAYENAS C G, FARDIS M N. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Mater J, 1991, 88(4): 363–373.
[21]  PAPADAKIS V G, VAYENAS C G, FARDIS M N. Physical and chemical characteristics affecting the durability of concrete [J]. ACI Mater J, 1991, 8(2): 186–196.
[22]  PAPADAKIS V G, FARDIS M N, VAYENAS C G. Hydration and carbonation of pozzolanic cements [J]. ACI Mater J, 1991, 89(2): 119–130.
[23]  PAPADAKIS V G, FARDIS M N, VAYENAS C G. Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation [J]. Mater Struct, 1992, 25(5): 293–304.
[24]  PAPADAKIS V G. Efficiency factors (k-values) for supplementary cementing materials regarding carbonation and chloride penetration [J]. Durability Concr, 2000, 192(11): 173–188.
[25]  PAPADAKIS V G. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress [J]. Cem Concr Res, 2000, 30(2): 291–299.
[26]  LIANG M T, QU W J, LIANG C H. Mathematical modeling and prediction method of concrete carbonation and its applications [J]. J Marine Sci Technol, 2002, 10(2): 128–135.
[27]  LIANG M T, LIN S M. Mathematical modeling and applications for concrete carbonation [J]. J Marine Sci Technol, 2003, 11(1): 20–33.
[28]  SAETTA A V, SCHREFLER B A, VITALIANI R V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials [J]. Cem Concr Resh, 1993, 23(4): 761–772.
[29]  SAETTA A V, SCHREFLER B A, VITALIANI R V. 2-D model for carbonation and moisture/heat flow in porous materials [J]. Cem Concr Res, 1995, 25(8): 1703–1712.
[30]  SAETTA A V, SCOTTA R, VITALIANI R V. Mechanical behavior of concrete under physical-chemical attacks [J]. J Eng Mech, 1998, 124(10): 1100–1109.
[31]  SAETTA A V, VITALIANI R V. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures PartⅠ: Theoretical formulation [J]. Cem Concr Res, 2004, 34(4): 571–579.
[32]  SAETTA A V, VITALIANI R V. Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures PartⅡ: Practical applications [J]. Cem Concr Res, 2005, 35(5): 958–967.
[33]  PUATATSANANON W, SAOUMA V E. Nonlinear coupling of carbonation and chloride diffusion in concrete [J]. J Mater Civ Eng, 2005, 17(3): 264–275.
[34]  ISGOR O B, RAZAQPUR A G. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures [J]. Cem Concr Compos, 2004, 26(1): 57–73.
[35]  STEFFENS A, DINKLER D, AHRENS H. Modeling carbonation for corrosion risk prediction of concrete structures [J]. Cem Concr Res, 2002, 32(6): 935–941.
[36]  BARY B, SELLIER A. Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete [J]. Cem Concr Res, 2004, 34(10): 1859–1872.
[37]  WANG X Y, LEE H S. A model predicting carbonation depth of concrete containing silica fume [J]. Mater Struct, 2009, 42(6): 691–704.
[38]  WANG X Y, LEE H S. A model for predicting the carbonation depth of concrete containing low-calcium fly ash [J].Construct Build Mater, 2009, 23(2): 725–733.
[39]  BAHADOR S D, CAHYADI J H. Modelling of carbonation of PC and blended cement concrete [J]. The IES JPart A: Civ Struct Eng, 2009, 2(1): 59–67.
[40]  JIANG L H, LIN B Y, CAI Y B. A model for predicting carbonation of high-volume fly ash concrete [J]. Cem Concr Res, 2000, 30(5): 699–702.
[41]  蒋林华. 大掺量粉煤灰混凝土的水化和微结构机理[D]. 博士论文, 河海大学, 南京, 1998.
JIANG L H. Hydration, microstructure and mechanism of high volume fly ash concrete (in Chinese, dissertation). Hohai University, Nanjing, 1998.
[42]  刘志勇, 孙伟. 与钢筋脱钝化临界孔溶液pH值相关联的混凝土碳化理论模型[J]. 硅酸盐学报, 2007, 35(7): 899–903.
LIU Zhiyong, SUN Wei. J Chin Ceram Soc, 2007, 35(7): 899–903.
[43]  SUN Wei, LIU Zhiyong. Durability and service life prediction of concrete under coupling action of chloride penetration and carbonation in sea air [C]// Proceedings of the Substructure Life’ 06 International Workshop, Shanghai, 2006, 21–31.
[44]  CASTELLOTE M, ANDRADE C, TURRILLAS X, et al. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction [J]. Cem Concr Res, 2008, 38(12): 1365–1373.
[45]  CASTELLOTE M, ANDRADE C, TURRILLAS X, et al. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE [J]. Cem Concr Res, 2008, 38(12): 1374–1384.
[46]  SAEKI T, OHGA H, NAGATAKI S. Mechanism of carbonation and prediction of carbonation process of concrete [J]. Concr Libr JSCE, 1991, 17: 23–36.
[47]  SAEKI T, OHGA H, NAGATAKI S. Change in micro-structure of concrete due to carbonation [J]. Concr Libr JSCE, 1991, 18: 1–11.
[48]  NGALA V T, PAGE C L. Effects of carbonation on pore structure and diffusion properties of hydrated cement paste [J]. Cem Concr Res, 1997, 27(7): 995–1007.
[49]  ISHIDA T, SOLTANI M, MAEKAWA K. Influential parameters on the theoretical prediction of concrete carbonation process [C]// Proceeding of 4th International Conference on Concrete under Severe Conditions, Seoul, Korea, 2004: 205–212.
[50]  GERVAN T V, BAELEN D V, VANDECASTEELE V D. Influence of carbonation and carbonation methods on leaching of metals from mortars [J]. Cem Concr Res, 2004, 34(1): 149–156.
[51]  CLAISSE P A, SAYAD H E, SHAABAN I G. Permeability and pore volume of carbonated concrete [J]. ACI Mater J, 1999, 96(3): 378–381.
[52]  JOHANNESSON B, UTGENANNT P. Microstructural changes caused by carbonation of cement mortar [J]. Cem Concr Res, 2001, 31(6): 925–931.
[53]  DIAS W P S. Reduction of concrete sorptivity with age through carbonation [J]. Cem Concr Res, 2000, 30(8): 1255–1261.
[54]  KIYOSHI A, SYUNSUKE I, YUJI S, et al. Changes in pore structure of hardened body with large water cement ratio by a carbonation process [J]. J Chin Ceram Soc, 2010, 38(9): 1671–1676.
[55]  GERVEN T V, CORNELIS G, VANDOREN E, et al. Effects of carbonation and leaching on porosity in cement-bound waste [J].Waste Manage, 2007, 27(7): 977–985.
[56]  ENCULSCU M. Carbonation in mortars and concretes with white and coloured cements [C]. RILEM: International Symposium on Carbonation of Concrete Fulmer Grange, UK, 1976.
[57]  CEUKELAIRE L D, NIEUWENBURG D V. Accelerated carbonation of a blaste-furnace cement concrete [J]. Cem Concrete Res, 1993, 23(2): 442–452.
[58]  THIERY M, VILLAIN G, DANGLA P, et al. Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics [J]. Cem Concr Res, 2007, 37(7): 1047–1058.
[59]  THIERY M, VILLAIN G, BOUNY V B, et al. Modelling of concrete carbonation based on coupled mass transport and chemical reactions [C]// International RILEM Workshop on Performance Based Evaluation and Indicators for Concrete Durability, Spain, Madrid, 19–21 March, 2006.
[60]  THIERY M, BOUNY B B, VILLAIN G, et al. Numerical modeling of concrete carbonation based on durability indicators [J]. ACI Mater J, 2006, 234: 765–780.
[61]  VILLAIN G, THIERY M, PLATRET G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry [J]. Cem Concr Res, 2007, 37(8): 1182–1192.
[62]  MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of structure concrete [M]. London and New York: Taylor & Francis Group, 2009: 218–255.
[63]  MAEKAWA K, ISHIDA T, KISHI T. Multi-scale modeling of concrete performance integrated materials and structural mechanics [J]. J Adv Concr Technol, 2003, 1(2): 91–126.
[64]  ISHIDA T, MAEKAWA K. Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory [C]. Proceedings of JSCE, 2000, 47(648): 203–215.
[65]  ISHIDA T, MAEKAWA K, SOLTANI M. Theoretically identified strong coupling of carbonation rate and thermodynamic moisture states in micropores of concrete [J]. J Adv Concr Technol, 2004, 2(2): 213–222.
[66]  ISHIDA T, MAEKAWA K, KISHI T. Enhanced modeling of moisture equilibrium and transport in cementitious materials under arbitrary temperature and relative humidity history [J]. Cem Concr Res, 2007, 37(4): 565–578.
[67]  ISHIDA T, LI C H. Modeling of carbonation based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of concrete [J]. J Adv Concr Technol, 2008, 6(2): 303–316.
[68]  SONG H W, KWON S J, BYUN K J, et al. Predicting carbonation in early-aged cracked concrete [J]. Cem Concr Res, 2006, 36(5): 979–989.
[69]  SONG H W, KWON S J. Permeability characteristics of carbonated concrete considering capillary pore structure [J]. Cem Concr Res, 2007, 37(6): 909–915.
[70]  KWON S J, SONG H W. Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling [J]. Cem Concr Res, 2010, 40(1): 119–127.
[71]  MONTEIRO I, BRANCO F A, BRITO J D, et al. Statistical analysis of the carbonation coefficient in open air concrete structures [J]. Construct Build Mater, 2012, 29: 263–269.
[72]  ALAHMAD S, TOUMI A, VERDIER J, et al. Effect of crack opening on carbon dioxide penetration in cracked mortar samples [J]. Mater Struct, 2009, 42(5): 559–566.
[73]  SAEKI T, OHGA H, NAGATAKI S. Mechanism of carbonation and prediction of carbonation process of concrete [J]. Concr Libr JSCE, 1991, 17: 23–36.
[74]  SAEKI T, OHGA H, NAGATAKI S. Change in micro-structure of concrete due to carbonation [J]. Concr Libr JSCE, 1991, 18: 1–12.
[75]  GERARD B, MARCHAND J. Influence of cracking on the diffusion properties of cement-based materials: Part Ⅰ. Influence of continuous cracks on the steady state regime [J]. Cem Concr Res, 2000, 30(1): 37–43.
[76]  MILLINGTON R J. Gas diffusion in porous media [J]. Science, 1959, 130: 100–102.
[77]  STORA E, CONRARDY C, BARBARULO R, et al. A reactive transport model based on thermodynamic computations to estimate the atmospheric carbonation of cementitious materials [C]// RILEM Workshop on Long-Term Performance of Cementitious Barriers and Reinforced Concrete in Nuclear Power Plants-NUCPERF, France, Cadarache, March 30, 2009.
[78]  KHUNTHONGKEAW J, TANGTERMSIRIKUI S, LEELAWAT T. Experimental investigation on carbonation of fly ash concrete [C]// Proceeding 1st National Concrete Conference, Thailand, 2003, 1–7.
[79]  KHUNTHONGKEAW J, TANGTERMSIRIKUI S. Model for simulating carbonation of fly ash concrete [J]. J Mater Civ Eng, 2005, 17(5): 570–578.
[80]  KHUNTHONGKEAW J, TANGTERMSIRIKUI S, LEELAWAT T. A study on carbonation depth prediction for fly ash concrete [J]. Construct Build Mater, 2006, 20(9): 744–753.
[81]  HOUST Y F, WITTMANN F H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste [J]. Cem Concr Res, 1994, 24(6): 1165–1176.
[82]  HOUST Y F, WITTMANN F H. Depth profiles of carbonates formed during natural carbonation [J]. Cem Concr Res, 2002, 32(12): 1923– 1930.
[83]  PERRY R H. Perry’s Chemical Engineer’S Handbook [M]. 7th ed. New York: McGraw-Hill, 1997: 58–59.
[84]  MUNTEAN A, BOHM M. A moving-boundary problem for concrete carbonation: Global existence and uniqueness of weak solutions [J]. Math Anal Appl, 2009, 350(1): 234–251.
[85]  MUNTEAN A, BOHM M, Kropp J. Moving carbonation fronts in concrete: a moving-sharp-interface approach [J]. Chem Eng Sci, 2011, 66(3): 538–547.
[86]  BORGES P H R, COSTA J O, MILESTONE N B, et al. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS [J]. Cem Concr Res, 2010, 40(2): 284–292.
[87]  YANG T, KELLER B, MAGYARI E. Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an atomic force microscope [J]. J Mater Sci, 2003, 38(6): 1909–1916.
[88]  BERTOS M F, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 [J]. J Hazard Mater, 2004, 112(3): 193–205.
[89]  FLOREZ V M, FINDLING N, BRUNET F. Changes on the nanostructure of cementitious calcium silicate hydrates (C–S–H) induced by aqueous carbonation [J]. J Mater Sci, 2007: 1–8, doi 10.1007/s10853– 011–5852–6.
[90]  CONCIATORI D, LAFERRIERE F, BRUHWILER E. Comprehensive modeling of chloride ion and water ingress into concrete considering thermal and carbonation state for real climate [J]. Cem Concr Res, 2010, 40(1): 109–118.
[91]  Peter M A, MUNTEAN A, MEIER S A, et al. Competition of several carbonation reactions in concrete: A parametric study [J]. Cem Concr Res, 2008, 38(12): 1385–1393.
[92]  MEIER S A, PETER M A, MUNTEAN A, et al. Dynamics of the internal reaction layer arising during carbonation of concrete [J]. Chem Eng Sci, 2007, 62(4): 1125–1137.
[93]  MEIER S, MUNTEAN A. A two-scale reaction-diffusion system with micro-cell reaction concentrated on a free boundary [J]. Comptes Rendus Mecanique, 2008, 336(6): 481–486.
[94]  AIKI T, KUMAZAKI K. Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process [J]. Physica B, 2011, doi: 10.1016/j.physb. 2011.10. 016.
[95]  MITCHELL M J, JENSEN O E, CLIFFE K A, et al. A model of carbon dioxide dissolution and mineral carbonation kinetics [J]. Proceedings of The Royal Society, 2010, 466(2117): 1265–1290.
[96]  HIDALGO A, DOMINGO C, GARCIA C, et al. Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation [J]. J Mater Sci, 2008, 43(9): 3101–3111.
[97]  GONZALEZ C A, HIDALGO A, ANDRADE C, et al. Modification of composition and microstructure of Portland cement pastes as a result of natural and supercritical carbonation procedures [J]. Ind Eng Chem Res, 2006, 45(14): 4985–4992.
[98]  CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations [J]. Mater Struct, 2009, 42(4): 515–525.
[99]  HYVERT N, SELLIER A, DUPRAT F, et al. Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation [J]. Cem Concr Res, 2010, 40(11): 1582–1589.
[100]  MATSUSHITA F, AONO Y, SHIBATA S. Calcium silicate structure and carbonation shrinkage of a tobermorite-based material [J]. Cem Concr Res, 2004, 34(7): 1251–1257.
[101]  ALEXANDER M G, MACKECHNIE J R, YAM W. Carbonation of concrete bridge structures in three South African localities [J]. Cem Concr Compos, 2007, 29(10): 750–759.
[102]  VALCUENDE M, PARRA C. Natural carbonation of self-compacting concretes [J]. Construct Build Mater, 2010, 24(5): 848–853.
[103]  SILVA F G D, HELENE P, BORGES P C, et al. Sources of variations when comparing concrete carbonation results [J]. J Mater Civ Eng, 2009, 21(7): 333–342.
[104]  GALAN I, ANDRADE C. Comparison of carbonation models [C]// 3rd International RILEM PhD Student Workshop on Modelling the Durability of Reinforced Concrete, Portugal, Guimaraes, October 22–24, 2009.
[105]  CASTRO P, MORENO E I, GENESCA J. Influence of marine micro-climates on carbonation of reinforced concrete buildings [J]. Cem Concr Res, 2000, 30(10): 1565–1571.
[106]  HAQUE M N, KHAIAT H. Carbonation of concrete structures in hot dry coastal regions [J]. Cem Concr Compos, 1997, 19(2): 123–129.
[107]  KHAIAT H A, FATTUHI N. Carbonation of concrete exposed to hot and arid climate [J]. J Mater Civ Eng, 2002, 14(2): 97–107.
[108]  ROZIERE E, LOUKILI A, CUSSIGH F. A performance based on approach for durability of concrete exposed to carbonation [J]. Construct Build Mater, 2009, 23(1): 190–199.
[109]  MASLEHUDDIN M, PAGE C L, RASHEEDUZZAFAR. Effect of temperature and salt contamination on carbonation of cements [J]. J Mater Civ Eng, 1996, 8(2): 63–69.
[110]  CASTEL A, FRANCOIS R, ARLIGUIE G. Effect of loading on carbonation penetration  in reinforced concrete elements [J]. Cem Concr Res, 1999, 29(4): 561–565.
[111]  CARMELIET J, DERLUYN H, MERTENS S, et al. Multiscale modelling of coupled problems in porous materials [C]// International RILEM Symposium on Concrete Modelling-CONMOD’08, The Netherlands, Delft, May 26–28, 2008.
[112]  HUSSAIN R R, ISHIDA T. Critical carbonation depth for initiation of steel corrosion in fully carbonated concrete and development of electrochemical carbonation induced corrosion model [J]. Int J Electrochem Sci, 2009, 4: 1178–1195.
[113]  MARQUES P F, COSTA A. Service life of RC structures: carbonation induced corrosion. Prescriptive vs. performance-based methodologies [J]. Construct Build Mater, 2010, 24(3): 258–265.
[114]  ANN K Y, PACK S W, HWANG J P, et al. Service life prediction of a concrete bridge structure subjected to carbonation [J]. Construct Build Mater, 2010, 24(8): 1494–1501.
[115]  MARQUES P F, COSTA A. Service life of RC structures: carbonation induced corrosion. Prescriptive vs. performance-based methodologies [J]. Construct Build Mater, 2010, 24(3): 258–265.
[116]  PARAMESWARAN L, KUMAR R, SAHU G K. Effect of carbonation on concrete bridge service life [J]. J Bridge Eng, 2008, 13(1): 75–82.

 

married cheaters why some women cheat click
women want men infidelity signs how do i know if my wife cheated
how do i know if my wife has cheated men having affairs read
how to catch a cheater redirect go
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831
http://www.jccsoc.com
E-mail:jccsoc@vip.163.com