HomeAbout JournalEditorial BoardSubscriptionsContacts UsCHINESE
Home >> MagazineArticle
Recent Studies on Garnet Scintillation Crystals
Author:WANGChao1 2 RENGuohao2 
Unit:1. University of Chinese Academy of Sciences  Beijing 100864  China  2. Shanghai Institute of Ceramics  Chinese Academy of Sciences  Shanghai 201800  China 
Keyword:garnet crystal  scintillation property  antisite defects  
Classification:O7
Year,volume(Issue):page number:2015,43(4):882-891
Summary:

 Recent development on garnet scintillation crystals studies was reviewed. Pr or Ce-doped (Lu,Y) AG crystals are introduced from structure, growth and scintillation characteristics. The scintillation mechanism, energy transfer and carriers-retrapping process of activators as well as the influence of antisite defects on their characterization were depicted. Antisite defects, which are suggested to be responsible for the slow components, were found to result from the high growth temperature, and could be eliminated by the incorporation of Gd and Ga ions. A compound of Gd3(Ga5-xAlx)O12:Ce presents an optimum light yield and a superior energy resolution among the existing oxide scintillators. The multi-components promote the development of garnet single crystal scintillators.

printable coupons for cialis outbackuav.com coupon for free cialis
Foundation item:
国家自然科学基金(51202276);上海硅酸盐研究所创新项目基金(Y39ZC2130G)资助。
About The Author:
汪 超(1990—),男,硕士研究生。
my wife cheated on me now what website husband cheat
References:

 [1] NIKL M. Scintillation detectors for X-rays [J]. Meas Sci Technol, 2006, 17(4): 37–54.

[2] NIKL M, YOSHIKAWA, KAMADA K, et al, Development of LuAG-based scintilla tor crystals [J]. Prog Cryst Growth Charact Mater, 2013, 59(2): 47–72.
[3] 任国浩. 无极闪烁晶体的发展趋势[J]. 人工晶体学报, 2012, 41(增刊): 179–183. REN Guohao. J Synth Cryst (in Chinese), 2012, 41(Suppl): 179–183.
[4] KAMADA Kei, KUROSAWA Shunsuke, PRUSA Petr, et al. Cz grown 2-in size Ce:Gd3(Al,Ga)5O12 single crystal; relationshipbetween Al, Ga site occupancy and scintillation properties[J]. Opt Mater, 2014, 36 (2): 1942–1945.
[5] BRANDLE C D. Czochralski growth of oxides[J]. J Cryst Growth, 2004, 264(4): 593–604.
[6] 冯锡淇. YAG和LuAG晶体中的反位缺陷[J]. 无机材料学报, 2010, 25(8): 785–794. FENG Xiqi. J Inorg Mater (in Chinese), 2010, 25(8): 785–794.
[7] DUJARDIN C, MANCINI C, AMANS D, et al. LuAG:Ce fibers for high energy calorimetry [J]. J Appl Phys, 2010, 108(1): 1–7.
[8] MARES J A, BEITLEROVA A, NIKL M, et al. Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV[C]// 5th European Conference on Luminescent Detectors and Transformers of Ionising Radiation. Prague, CZECH Republc, 2004: 353–357.
[9] KAMADAKEI, TAKANORI Endo, KOUSUKE Tsutumi. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single crystal scintillators [J]. Cryst Growth Des, 2011, 11(10): 4484–4490.
[10] KUKLJA M, Defects in yttrium aluminium perovskite and garnet crystals: atomistic study [J]. J Phys: Condens Matter, 2000, 12(13): 2953–2967
[11] STANEKC R, MCCLELLANAK.J, LEVY M R, et al. The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance [J]. Nucl Instrum Method Phys Res, 2007, 579(1): 27–30.
[12] VEDDA A, MARTINI M, MARTINO D I, et al. Defect states in Lu3Al5O12:Ce crystals[J]. Radiat Eff Deffects Solids, 2002, 157(6/12): 1003–1007.
[13] NIKL M. Energy transfer phenomena in the luminescence of wide band-gap scintillators [J]. Phys Status Solidi A, 2005, 202(2): 201–206.
[14] ZORENKO Y U, VOLOSHINOVSKII A, KONSTANKEVYCH, et al. Luminescence of excitons and antisite defects in the phosphors based on garnet compounds[C]//5th European Conference on Luminescent Detectors and Transformers of Ionising Radiation, Prague, Czech Republc, 2004: 677–680.
[15] ZORENKO Y, GORBENKO V, KONSTANKEVYCH I, et al. Single- crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues [J]. J Lumin, 2005, 114(2): 85–94.
[16] XIE Jianjun, ZHU Xiaoxing, FAN Lingcong, et al. X-ray absorption fine structure analysis of valencestate of Ce in polycrystalline Ce:LuAG films [J]. IEEE Transactions on Nuclear Science, 2014, 61(1): 428–432.
[17] NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1−x)5O12: Pr scintillator[J]. Appl Phys, 2006, 88(14): 1–3.
[18] FASOLI M, VEDDA A, NIKL M, et al. Band-gap engineering for removing shallow traps in rare earth Lu3Al5O12 garnet scintillators using Ga3+ doping[J]. Phys Rev B, 2011, 84: 1–4.
[19] DUDNIK EV, LAKIZA S N, TISHCHENKO Y A S, et al. Phase diagrams of refractory oxide systems and microstructural design of materials[J]. Powder Metall Met Ceram, 2014, 53: 303–311.
[20] BONDAR I A, KOROLEVA L N, BEZRUK, et al. Phase diagram estimation of the Al2O3-Re2O3 [J]. Inorg Mater, 1984, 20(2): 214–218. [21] PETROSYAN A G, POPOVA V F, GUSAROV V V, et al, The Lu2O3-Al2O3 system: Relationships for equilibrium-phase and supercooled states[J]. J Cryst Growth, 2006, 293(1): 74–77.
[22] ASHUROV M K, VORONKO Y K, OSIKO V V, et al. Spectroscopic study of stoichiometry deviation in crystals with garnet structure[J]. Phys Status Solidi (a), 1977, 42(1): 101–110.
[23] PATELA P, LEVY M R, GRIMES R W, et al. Mechanisms of nonstoichiometry in Y3Al5O12[J]. Appl Physs Lett, 2008, 93: 1–3.
[24] KUWANO Y, SUDA K, ISHIZAWA N, et al, Crystal growth and properties of (Lu,Y)3Al5O12 [J]. J Cryst Growth, 2004, 260(1/2): 159–165.
[25] KVAPIL J, KVAPIL J, MANEK B, et al. Czochralski growth of YAG-Ce in a reducing protective atmosphere [J]. J Cryst Growth, 1981, 52(4): 542–545.
[26] DROZDOWSKI W, LUKASIEWICZ Tadeusz, WOJTOWICZ Andrzej J, et al. “Thermoluminescence and scintillation of praseodymium-activated Y3Al5O12 and LuAlO3 crystals [J]. J Cryst Growth, 2005, 275(1/2): 709–714.
[27] KAMADA Kei, TSUTSUMI Kousuke, YANAGIDA Takayuki, et al. Large-size single crystal growth of Pr:Lu3Al5O12 and uniformity of its scintillation properties [C]//IEEE Nuclear Science Symposium Conference Record, Orlando, FL, USA, 2009:1546–1458.
[28] YOSHIKAWA A, CHANI V. Growth of Optical crystals by the micro-pulling-down method [J]. MRS Bull, 2009, 34(4): 266–270.
[29] YOSHIKAWA A, NIKL M, BOULON G, et al, Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method[C]//4th International Symposium on Laser, Scintillator and Nonlinear Optical Materials. Prague, Czech Republic, 2007: 6–10.
[30] KAMADA KEI, YANAGIDA A, TAKANORI Endo, et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12[J]. J Cryst Growth, 2012, 352(1): 88–90.
[31] XIAO Q, DERBY J J. Heat-transfer and Interface inversion during the Czochralski growth of yttrium-aluminum-garnet and gadolinium gallium garnet [J]. J Cryst Growth, 1994, 139(1/2): 147–157.
[32] OKANO Y, FUKUDA T, HIRATA A, et al, Numerical study on Czochralski growth of oxide single crystals [C]// 8th American Conference on Crystal Growth. Vail Colorado, USA,1991: 94–98.
[33] JEONGJ H., KANGI S. Analytical studies on the crystal-melt interface shape in the Czochralski process for oxide single crystals[J]. J Cryst Growth, 2000, 218(2/4): 294–312.
[34] 孙家跃, 杜海燕, 胡文祥. 固体发光材料[M]. 北京:化学工业出版社, 2003: 71–74.
[35] WONGC M, ROTMANS R., WARDE C, et al. Optical studies ofcerium doped yttrium aluminum garnet single crystals [J]. Appl Phys Lett, 1984, 44(11): 1038–1040.
[36] LETZ M, GOTTWALD A, RICHTER M, et al. Temperature dependent Urbach tail measurements of lutetium aluminum garnet single crystals [J]. Phys Rev B, 2010, 81(15): 1–7.
[37] NIKL M, MIHOKOVA E, PEJCHAL J, et al. The antisite LuAl defect-related traps in LuAG:Ce [J]. Phys Status Solidi B, 2005, 242(14): 119−121.
[38] ZORENKO Y U, GORBENKO V I, STRYGANYUK G B, et al. Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films[J]. Opt Spectrosc, 2005, 99(6): 923−931.
[39] ZORENKO Y U, VOLOSHINOVSKII A, SAVCHYN V, et al. Exciton and antisite defect luminescence in LuAG and YAG [J]. Phys Status Solidi B, 2007, 244(6): 2180−2189.
[40] XU Y N, CHING W Y. Electronic structure of Y3Al5O12 [J]. Phys Rev B, 1999, 59(16): 10530−10535.
[41] NIKL M.,OGINO H, KRASNIKOV A, et al. Photo- and radio- luminescence of Pr-doped Lu3Al5O12 single crystal [J]. Phys Status Solidi B, 2005, 202(1): 4–6.
[42] DORENBOS Pieter, Fundamental limitations in the performance of Ce3+, Pr3+and Eu2+-activated scintillators[J]. IEEE Trans Nucl Sci, 2010, 57(3): 1162–1167.
[43] GUMANSKAYA E G, KORZHIK M V, SMIRNOVA S A. Interconfiguration luminescence of Pr3+ ions in Y3Al5O12 and YAlO3 single-crystals[J]. Opt Spectros, 1992, 72(1): 155–159. [44] WINICJUSZ Drozdowski, DORENBOS Pieter, et al. Scintillation properties of praseodymium activated Lu3Al5O12 single crystals[J]. IEEE Transa Nuclr Sci, 2008, 55(4): 2420–2424.
[45] NIKL M, YOSHIKAWA A, VEDDA A, et al. Development of novel scintillator crystals [J]. J Cryst Growth, 2006, 292(2): 416–421.
[46] JIRIA Mares, NIKL Martin, BEITLEROVA Alena, et al. Scintillation properties of Ce3+- and Pr3+-doped LuAG, YAG and mixed LuxY1−xAG Garnet Crystals[J]. IEEE Transa Nuclr Sci, 2012, 59(5): 2120–2125.
[47] JIRIA Mares, NIKL Martin, BEITLEROVA Alena, et al. Scintillation properties of Pr3+-doped lutetium and yttrium aluminium garnets: Comparison Ce3+-doped ones [C]// 7th European-Israeli Workshop on Materials for and by Optics. Villeurbanne, France, 2011: 424–427.
[48] KHODYUK Ivan V, DE HAAS JOHAN T M, DORENBOS P, et al. Nonproportional RESPONSE Between 0.1−100 keV energy by means of highly monochromatic synchrotron X-rays[J]. IEEE Trans Nucl Sci, 2010, 57(3): 1175–1181.
[49] NIKL M.,OGINO H, KRASNIKOV A, et al. Photo- and radiolumin-escence of Pr-doped Lu3Al5O12 single crystal[J]. Phys Status Solidi (a), 2005, 202(1): 4–6.
[50] NIKL M, NITSCH K, POLAK K, et al. Slow components in the photoluminescence and scintillation decays of PbWO4 single crystals [J]. Phys Status Solidi B, 1996, 195(1): 311–323.
[51] CHEWPRADITKUL W, SWIDERSKI L, MOSZYNSKI M, et al. Comparative studies of Lu3Al5O12:Ce and Y3Al5O12:Ce scintillators for gamma-ray detection [J]. Phys Status Solidi A−Appl Mater Sci, 2009, 206:2599–2605.
[52] BABIN V. Luminescence of Pr3+-doped garnet single crystals [J]. Opt Mater, 2007, 30(1): 30–32.
[53] HIRAKU Ogino, YOSHIKAWA A, NIKL M, et al. Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals [J]. J Cryst Growth, 2006, 287(2): 335–338.
[54] WINICJUSZ Drozdowski, KAMIL Brylew, ANDRZEJ J W, et al. 33000 photons per MeV from mixed (Lu0.75Y0.25)3Al5O12:Pr scintillator crystals[J]. Opt Mater Express, 2014, 4(6): 1207–1212.
[55] VORONKO YU K,SOBOL A A. Local inhomogeneity of garnet crystal doped with rare-earth ions [J]. Phys. Sta. Sol. A, 1995, 27(2): 657–663.
[56] KOTTAISAMYA M, THIYAGARAJAN P, MISHRA J, et al. Color tuning of Y3Al5O12:Ce phosphor and their blend for white LEDs[J]. Mater Res Bull, 2008, 43(7): 1657–1663. [57] WU Jennifer L, GUNDIAH Gautam, CHEETHAM A K, et al. Structure–property correlations in Ce-doped garnet phosphors for use in solid state lighting[J]. Chem Phys Lett, 2007, 441(4/6): 250–254.
[58] NIKL M, MIHOKOVA E., PEJCHAL J, et al. Scintillator materials- Achievements, opportunities, and puzzles[C]//9th International Conference on Inorganic Scintillators and their Applications, Winston Salem, NC, USA, 2008: 1035-1041.
[59] OGINO HIRAKU, YOSHIKAWA AKIRA, NIKL MARTIN, et al. Growth and optical properties of Lu3(Ga,Al)5O12 single crystals for scintillator application. [C]//4th Asian Conference on Crystal Growth and Crystal Technology. Tohoku Univ, Katahira Campus, Sendai, Japan, 2009: 908–911. [60] KAMADA Kei, KUROSAWA Shunsuke, PRUSA Petr, et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties[C]//6th International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM). Shanghai, China , 2014: 1942–1945.
[61] KAMADA Kei, YANAGIDA Takayuki, PEJCHAL Jan, et al. Growth and scintillation properties of Pr doped Gd3(Ga,Al)5O12 single crystals[C]//18th American Conference on Crystal Growth and Epitaxy (ACCGE)/15th US Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE). Monterey, CA, USA, 2012: 84–87.
[62] DOMINIK U, HUPPERTZ P, WIECHERT D U, et al. Preparation and characterization of nanoscale lutetium aluminium garnet (LuAG) powders doped by Eu3+[J]. Opt Mater, 2007, 29(11): 1505–1509.
[63] KOBYAKOV S, KAMINSK A A, SUCHOCKI A, et al. Nd3+- doped yttrium aluminum garnet crystal as a near-infrared pressure sensor for diamond anvil cells [J]. Appl Phys Lett, 2006, 88(23): 1–2.
[64] GRINBERG M. 2E → 4A2 fluorescence of Cr3+ in high and intermediate field garnets[J]. J Lumin, 1993, 54: 369–382.
[65] KAMADA Kei, PEJCHAL Jan, NIKL Martin, et al. Growth of Sc doped RE3Al5O12 (RE = Y, Lu) single crystals by micro-pulling-down method and their scintillation properties[C]// 6th International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM). Shanghai, CHINA, 2014: 1934–1937.
[66] HIRAKU Ogino, YOSHIKAWA A, LEE J H, et al. Growth and characterization of Yb3+ doped garnet crystals for scintillator application[C]// 3rd International Symposium on Lasers and Nonlinear Optical Materials. Keystone, USA, 2004: 535–539.
[67] YAMAGA M, HENDERSON B, ODONNELLK P, et al. Temperature Dependence of the Life time of Cr3 + luminescence in garnet crystals [J]. Appl Phys B, 1990, 50(5): 425–431.
[68] SETLUR A A, SRIVASTAVA A M. The nature of Bi3+ luminescence in garnet hosts [J]. Opt Mater, 2006, 29(4): 410–415.
[69] PIETERSON L V, HEEROMA M, DE Heer, et al. Charge transfer luminescence of Yb3+[J]. J Lumin, 2000, 91: 177–193.
[70] NAKAZAWA E. Charge-transfer type luminescence of Yb3+ ions in YPO4,LaPO4,LuPO4 and Y2O2S,La2O2S,Lu2O2S[J]. J Lumin, 1979,89(1): 272–276.
[71] ROTMAN S R., TULLER H L, WARDE C. Defect property correlations in garnet crystals .6. the electrical-conductivity, defect structure, and optical-properties of luminescent calcium and cerium-doped yttrium-aluminum-garnet[J]. J Appl Phys, 1992, 71(3): 1209–1214.
[72] LIU Shuping, FENG Xiqi, ZHOU Zhiwei, et al. Effect of Mg2+ co-doping on the scintillation performance of LuAG:Ce ceramics [J] . Phys Status Solidi RRL, 2014, 8(1) : 105–109.
[73] STANEK C R, LEVY M R, MCCLELLAN K J, et al. Defect identification and compensation in rare earth oxide scintillators[C]//14th International Conference on Radiation Effects in Insulators. Univ Caen, Caen, France, 2008: 2657–2664.
[74] STANEK C R, MCCLELLAN K J, LEVY M R, et al. Extrinsic defect structure of RE3Al5O12 garnets[J]. Phys Status Solidi B, 2006, 243(11): 75–77.
[75] ANDRIESSEN J, DORENBOS P, VANEIJK Cwe. Calculation of energy levels of cerium in inorganic scintillator crystals [C]// Symposium on Scintillator and Phosphor Materials, at the 1994 MRS Spring Meeting. San Francisco, USA, 1994: 355–365.
[76] MISHRA K C. JOHNSON K H. Electronic structure and associated optical properties of LaPO4-Ce[C]//Symposium on Scintillator and Phosphor Materials, at the 1994 MRS Spring Meeting, San Francisco, USA, 1994: 367–371.
[77] PIETER Dorenbos. Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds [J]. J Lumin, 2013, 134: 310–318.
[78] GUO Huaixin, ZHANG Mingfu, HAN Jiecai, et al. First principles study of structural, phonon, optical, elastic and electronic properties of Y3Al5O12 [J]. Phys B: Condens Matter, 2012, 407: 2262–2266.
Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831
http://www.jccsoc.com
E-mail:jccsoc@vip.163.com