HomeAbout JournalEditorial BoardSubscriptionsContacts UsCHINESE
Home >> MagazineArticle
Optical Properties of CdSe Quantum Dot-Doped Boros…
Author:XUZhousu CHENGCheng 
Unit:Institute of Intelligent Optoelectronic Technology  Zhejiang University of Technology  Hangzhou 310014  China 
Keyword:cadmium selenide quantum dot  borosilicate glass  glass 
Classification:TN304.2
Year,volume(Issue):page number:2018,46(11):0-0
Summary:

 Borosilicate glasses doped with CdSe quantum dots (QDs) were prepared by a conventional melt-quenching process and subsequent heat treatment, using CdO and ZnSe as precursors of CdSe QDs. Based on the result by transmission electron microscopy (TEM), CdSe QDs are hexagonal crystals. The result of photoluminescence (PL) spectra shows that CdSe QDs exhibit intrinsic luminescence and defect related luminescence in a visible band. The intensity of defect related to luminescence decreases, while the intensity of intrinsic luminescence of quantum dots increases with increasing heat-treatment temperature. The effect of glass network structure on the crystallization of CdSe QDs was investigated. The result shows that the two-dimensional (2D) network structure and the mobility of Cd2+ and Se2- increase with increasing B2O3 concentration, which is conducive to the crystallization of QDs and the passivation of surface defect. The tunable PL emission of CdSe QDs-doped borosilicate glass could have a potential application as an optical gain material in the visible band.

Foundation item:
浙江省自然科学基金项目(LY16F040005);国家自然科学基金项目(61474100);区域光纤通信网与新型光通信系统国家重点实验室开放研究课题;浙江工业大学校级教学改革项目(JG201729);浙江工业大学2016年度创新性实验项目。
About The Author:
References:

LIU X F, ZHOU J J, ZHOU S F, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38–96.

[2] MONGIN C, MOROZ P, ZAMKOV M, et al. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots[J]. Nat Chem, 2018, 10(2): 255–230.

[3] Xu Z S, LIU X F, JIANG C, et al. Effect of topological structure on photoluminescence of PbSe quantum dot-doped borosilicate glasses[J]. J Am Ceram Soc, 2018,101(4): 1508–1515.

[4] KORALA L, WANG Z, LIU Y, et al. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol–gel assembly: enabling photoelectrochemical characterization and electronic applications[J]. ACS Nano, 2013,7(2): 1215–1223.

[5] BEAULAC R, ARCHER P I, OCHSENBEIN S T, et al. Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics[J]. Adv Funct Mater, 2008, 18(24): 3873–3891.

[6] CHENG C, WANG S, CHENG X. CdSe/PMMA: Plastic fiber material containing CdSe quantum dots[J]. Opt Laser Technol, 2012, 44(5): 1298–1300.

[7] LEE Y W, CHOI Y G, HEO J, et al. Compositional dependence of CdSe quantum dot formation on silicate host glass composition[J]. J Am Ceram Soc, 2013, 96(12): 3868–3871.

 

[8] KOLOBKOVA E V. Specific features of the growth of CdSe nanocrystals in fluorophosphate glasses[J]. Glass Phys Chem, 2006, 32(4): 404–411.

[9] SERQUEIRA1 E O, DANTAS N O. Luminescence of Nd3+ ions under excitation of CdSe quantum dots in a glass system: energy transfer[J]. Opt Lett, 2014, 39(1): 131–134.

[10] XU Z S, YAN J H, XU C, et al. Tunable near-infrared emission and fluorescent lifetime of PbSe quantum dot-doped borosilicate glass[J]. J Alloy Compd, 2017, 711: 58–63.

[11] DONG G P, WU B T, ZHANG F T, et al. Broadband near-infrared luminescence and tunable optical amplification around 1.55 μm and 1.33 μm of PbS quantum dots in glasses[J]. J Alloy Compd, 2011, 509(38): 9335–9339.

[12] XIA M L, LIU C, HAN J J, et al. Formation of CdS/Cd1−xZnxS sandwich-structured quantum dots with high quantum efficiency in silicate glasses[J]. J Lumin, 2017, 186: 30–33. 

[13] 江德生, 李国华, 韩和相, 等. 玻璃中CdSeS量子点的结构和光学性质[J]. 半导体学报, 2001, 22(8): 996–1001.

JIANG D S, LI G H, HAN H X, et al. J Semiconduct (in Chinese), 2001, 22(8): 996–1001.

[14] YU W W, QU L, GUO W, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chem Mater, 2013, 15: 2854–2860.

[15] RAJAPAKSHA R D, RANASINGHE M I. The shell thickness and surface passivation dependence of ?uorescence decay kinetics in CdSe/ZnS core-shell and CdSe core colloidal quantum dot[J]. J Lumin, 2017, 192: 860–866.

[16] WU D, ZHU C, ZHANG M. Ce3+- and Dy3+-doped oxyfluoride borosilicate glasses with near white luminescence[J]. J Am Ceram Soc, 2016, 99(5): 1587–1593.

[17] CHAKRABORTY I N, DAY D E, LAPP J C, et al. Structure-property relations in lanthanide borate glasses[J]. J Am Ceram Soc, 1985, 68(7): 368–371.

[18] MOLLA A R, TARAFDER A, MUKHERJEE S, et al. Processing and properties of Eu3+-doped barium bismuth titanate (BaBi4Ti4O15) glass-ceramic nanocomposites[J]. J Am Ceram Soc, 2013, 96(8): 2387–2395.

[19] LUCACEL R C, MARCUS C, TIMAR V, et al. FT-IR and Raman spectroscopic studies on B2O3-PbO-Ag2O glasses doped with manganese ions[J]. Solid State Sci, 2007, 9(9): 850–854.

[20] SARMA G V S S, REDDY C V, VATTIKUTI S V P, et al. Spectral investigations of Mn2+ doped Zn3(BO3)2 nanopowder[J]. J Mol Struct, 2013, 1048: 64–68.

 

 

Service and feedback:
Article download】【Add to Wishlist
Editorial Department of Journal of the Chinese Ceramic Society
Address: No.11 Sanlihe Road, Beijing, China    P.C.:100831
http://www.jccsoc.com
E-mail:jccsoc@vip.163.com