[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chem Mater, 2010, 22(3): 587–603.
[2] NUMATA K, SAKAKI C,YAMANAKA S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries [J]. Chem Lett, 1997, 1997(8): 725–726.
[3] THACKERAY M M, KANG S H, JOHNSON C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries [J]. J Mater Chem, 2007, 17(30): 3112–3125.
[4] YAMAMOTO S, NOGUCHI H, ZHAO W. Improvement of cycling performance in Ti substituted 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 through suppressing metal dissolution [J]. J Power Sources, 2015, 278: 76–86.
[5] LI Q, LI G, FU C, et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries [J]. ACS Appl Mater Inter, 2014, 6(13): 10330–10341.
[6] GU M, GENC A, BELHAROUAK I, et al. Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries[J]. Chem Mater, 2013, 25(11): 2319–2326.
[7] ZHENG J, GU M, XIAO J, et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process [J]. Nano Lett, 2013, 13(8): 3824–3830.
[8] ZHANG X, BELHAROUAK I, LI L, et al. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD [J]. Adv Energy Mater, 2013, 3(10): 1299–1307.
[9] CONG L N, GAO X G, Ma S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12 [J]. Electrochim Acta, 2014, 115: 399–406.
[10] WU C, FANG X, GUO X, et al. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole [J]. J Power Sources, 2013, 231(6): 44–49.
[11] LEE S H, YOON C S, AMINE K, et al. Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating [J]. J Power Sources, 2013, 234(21): 201–207.
[12] WANG Z, LIU E, HE C, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries [J]. J Power Sources, 2013, 236: 25–32.
[13] WANG J, HE X, KLOEPSCH R, et al. Increased capacity of LiNi1/3Co1/3Mn1/3O2-Li[Li1/3Mn2/3]O2 cathodes by MnOx–surface modification for lithium-ion batteries [J]. Energy Technol, 2014, 2(2): 188–193.
[14] MIAO X, NI H, ZHANG H, et al. Li2ZrO3-coated 0.4Li2MnO3•0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery [J]. J Power Sources, 2014, 264: 147–154.
[15] QIAO Q Q, ZHANG H Z, LI G R, et al. Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries [J]. J Mater Chem A, 2013, 1(17): 5262–5268.
[16] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angew Chem Int Ed, 2007, 46(50): 7778–7781.
[17] ZHANG H Z, QIAO Q Q, LI G R, et al. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery [J]. J Mater Chem, 2012, 22(26): 13104–13109.
[18] 曹绪龙, 吕凯, 崔晓红, 等. 阴离子表面活性剂与阳离子的相互作用[J]. 物理化学学报, 2010, 26(7): 1959―1964.
CAO Xuelong, LYU Kai , CUI Xiaohong, et al. Acta Phys Chim Sin(in Chinese), 2010, 26(7): 1959–1964.
|