首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Co/Cr双掺杂Zn(Mg)Ga2O4纳米材料结构中阳离子分布及性能
作者:段秀兰 刘建 李楠楠 吴园春 
单位:山东大学 晶体材料国家重点实验室 济南 250100 
关键词:镓酸锌镁 阳离子分布 发光性能 溶胶–凝胶法 
分类号:TB32
出版年,卷(期):页码:2016,44(4):508-512
DOI::10.14062/j.issn.0454-5648.2016.04.05
摘要:

 采用溶胶–凝胶法制备了Co/Cr双掺的ZnxMg1–xGa2O4(x =0~0.9)纳米粉材料,应用X射线光电子能谱研究了材料微观结构中阳离子分布及其随材料组成和热处理温度的变化,并研究了材料的光学吸收和发光性能随材料组成的变化关系。结果表明:该纳米材料中阳离子分布呈无序状态,Zn2+,Mg2+和Ga3+离子分别占据尖晶石结构的四面体和八面体2种晶格位置。随着热处理温度的升高和材料中Zn含量的增加,材料的反转度降低。随材料中Zn含量的减少,发光峰位置发生红移。当x值从0增加到0.3时,Co/Cr:ZnxMg1–xGa2O4纳米粉在370 nm处吸收强度相对减弱,表明四配位的Cr3+所占比例减少。

 
sumatriptan side effects sumatriptan side effects sumatriptan side effects

Co/Cr co-doping ZnxMg1–xGa2O4(x =0–0.9) nano-particles were prepared by a sol-gel method. The cation distribution in the material as a function of composition and annealing temperature was investigated by X-ray photoelectron spectroscopy. The optical absorption and emission properties of the materials with different compositions were also investigated. The results show that the distribution of cations in the nano-material is disordered, and Zn2+, Mg2+ and Ga3+ ions occupy both the tetrahedral and octahedral sites of spinel structure. The inversion degree of the material decreases with increasing temperature and Zn content. The emission spectra have a red shift when Zn content decreases. The intensity of the absorption peak at 370 nm of Co/Cr:ZnxMg1–xGa2O4 nano-material decreases when x value increases from 0 to 0.3, indicating that the fraction of tetrahedral Cr3+ decreases.

abortion las vegas period after abortion abortion pictures
基金项目:
国家自然科学基金项目(51172130)资助。
作者简介:
段秀兰(1975—),女,博士,副教授。
bystolic copay card click bystolic coupon voucher
参考文献:

 [1] BALLAROME N, CAVANI F, PASSERI, S, et al. Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: The effect of morphology on catalytic performance [J]. Appl Catal A, 2009, 366: 184–192.

[2] SAKAVATU-NIASARI M, DAVAR F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor [J]. Mater Lett, 2009, 63: 441–443.
[3] GUL I H, MAQSOOD A, NAEEM M, et al. Optical, magnetic and electrical investigation of cobalt ferrite nanoparticles synthesized by co-precipitation route [J]. J Alloy Compd, 2010, 507: 201–206. 
[4] JOVIC N G, MASSADEH A S, KREMENOVIC A S, et al. Effects of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles [J]. J Phys Chem C, 2009, 113: 20559–20567.
[5] SREEJA V, SMITHA T S, NAND D, et al. Size dependent coordination behavior and cation distribution in MgAl2O4 nanoparticles from Al-27 solid state NMR studies [J]. J Phys Chem C, 2008, 112: 14737–14744.
[6] MITTAL V K, CHANDRAMOHAN P, ABER S, et al. Cation distribution in NixMg1–xFe2O4 studied by XPS and Mossbauer spectroscopy [J]. Solid State Commun, 2006, 137: 6–10.
[7] WEIDENBORNE J, STEMPLE L N R, OKAYA Y. Cation distribution and oxygen parameter in Magnesium gallate, MgGa2O4 [J]. Acta Cryst, 1966, 20: 761–764. 
[8] 王静, 邓彤, 杨彩琴, 等. Zn(GaFe)2O4固溶体尖晶石结构中阳离子分布研究[J]. 无机材料学报, 2008, 23(1): 90–194. 
WANG J, DENG T, YANG C Q, WANG W. J Inorg Mater (in Chinese), 2008, 23(1): 90–194.
[9] BATTISTONI C, DORMANN J, FIOEANI D, et al. An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions [J]. An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions Solid State Commun, 1981, 39: 581–585.
[10] FAN H Y, WANG G N, HU L L. Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–Ga2O3 glasses [J]. Solid State Sci, 2009, 11: 2065–2070.
[11] DRUSKA P, STEINIKE U, ŠEPELAK V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite [J]. J Solid State Chem, 1999, 146: 13–21.
[12] TAY Y Y, LI S, SUN C Q, et al. Size dependence of Zn 2p3/2 binding energy in nanocrystalline ZnO [J]. Appl Phys Lett, 2006, 88: 173118(1–3).
[13] DUAN X L, LIU J, WANG X Q, et al. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals [J]. Opt Mater, 2014, 37: 854–861.
[14] KESAVULU C R, CHAKRADHAR P S, MURALIDHARA R S, et al. EPR, optical absorption and photoluminescence properties of Cr3+ ions in lithium borophosphate glasses [J]. J Alloy Compd, 2010, 496: 75–80.
[15] GRARPON C, BRENIER A, MONCORGE R. Site-selective optical spectroscopy of Cr3+ doped non-stoichiometric green spinel MgO-2.6 Al2O3 [J]. Opt Mater, 1998, 10: 177–189.
[16] YOO S, PAEK U, HAN W T. Optical properties of the optical fiber containing Co2+ doped ZnO–Al2O3–SiO2 glass-ceramics [J]. J Non-Cryst Solids, 2002, 303: 291–295.
[17] HONG R Y, LI J H, CHEN L L, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles [J]. Powder Technol, 2009, 189: 426–432.
[18] 陈传志, 周祚万. 纳米氧化锌的制备及其中红外、紫外-可见光吸收特性[J]. 功能材料, 2004, 35(1): 97–99.
CHEN C Z, ZHOU Z W. J Funct Mater (in Chinese), 2004, 35(1): 97–99.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com