[1] BALLAROME N, CAVANI F, PASSERI, S, et al. Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: The effect of morphology on catalytic performance [J]. Appl Catal A, 2009, 366: 184–192.
[2] SAKAVATU-NIASARI M, DAVAR F. Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor [J]. Mater Lett, 2009, 63: 441–443.
[3] GUL I H, MAQSOOD A, NAEEM M, et al. Optical, magnetic and electrical investigation of cobalt ferrite nanoparticles synthesized by co-precipitation route [J]. J Alloy Compd, 2010, 507: 201–206.
[4] JOVIC N G, MASSADEH A S, KREMENOVIC A S, et al. Effects of thermal annealing on structural and magnetic properties of lithium ferrite nanoparticles [J]. J Phys Chem C, 2009, 113: 20559–20567.
[5] SREEJA V, SMITHA T S, NAND D, et al. Size dependent coordination behavior and cation distribution in MgAl2O4 nanoparticles from Al-27 solid state NMR studies [J]. J Phys Chem C, 2008, 112: 14737–14744.
[6] MITTAL V K, CHANDRAMOHAN P, ABER S, et al. Cation distribution in NixMg1–xFe2O4 studied by XPS and Mossbauer spectroscopy [J]. Solid State Commun, 2006, 137: 6–10.
[7] WEIDENBORNE J, STEMPLE L N R, OKAYA Y. Cation distribution and oxygen parameter in Magnesium gallate, MgGa2O4 [J]. Acta Cryst, 1966, 20: 761–764.
[8] 王静, 邓彤, 杨彩琴, 等. Zn(GaFe)2O4固溶体尖晶石结构中阳离子分布研究[J]. 无机材料学报, 2008, 23(1): 90–194.
WANG J, DENG T, YANG C Q, WANG W. J Inorg Mater (in Chinese), 2008, 23(1): 90–194.
[9] BATTISTONI C, DORMANN J, FIOEANI D, et al. An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions [J]. An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions An XPS and Mössbauer study of the electronic properties of ZnCrxGa2−xO4 spinel solid solutions Solid State Commun, 1981, 39: 581–585.
[10] FAN H Y, WANG G N, HU L L. Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–Ga2O3 glasses [J]. Solid State Sci, 2009, 11: 2065–2070.
[11] DRUSKA P, STEINIKE U, ŠEPELAK V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite [J]. J Solid State Chem, 1999, 146: 13–21.
[12] TAY Y Y, LI S, SUN C Q, et al. Size dependence of Zn 2p3/2 binding energy in nanocrystalline ZnO [J]. Appl Phys Lett, 2006, 88: 173118(1–3).
[13] DUAN X L, LIU J, WANG X Q, et al. Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals [J]. Opt Mater, 2014, 37: 854–861.
[14] KESAVULU C R, CHAKRADHAR P S, MURALIDHARA R S, et al. EPR, optical absorption and photoluminescence properties of Cr3+ ions in lithium borophosphate glasses [J]. J Alloy Compd, 2010, 496: 75–80.
[15] GRARPON C, BRENIER A, MONCORGE R. Site-selective optical spectroscopy of Cr3+ doped non-stoichiometric green spinel MgO-2.6 Al2O3 [J]. Opt Mater, 1998, 10: 177–189.
[16] YOO S, PAEK U, HAN W T. Optical properties of the optical fiber containing Co2+ doped ZnO–Al2O3–SiO2 glass-ceramics [J]. J Non-Cryst Solids, 2002, 303: 291–295.
[17] HONG R Y, LI J H, CHEN L L, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles [J]. Powder Technol, 2009, 189: 426–432.
[18] 陈传志, 周祚万. 纳米氧化锌的制备及其中红外、紫外-可见光吸收特性[J]. 功能材料, 2004, 35(1): 97–99.
CHEN C Z, ZHOU Z W. J Funct Mater (in Chinese), 2004, 35(1): 97–99.
|