[1]OLSSON E, DUNLOP G L. The effect of Bi2O3 content on the microstructure and electrical properties of ZnO varistor materials[J]. J Appl Phys, 1989, 66(9): 4317–4324.
[2]DEY D, BRADT R C, Grain growth of ZnO during Bi2O3 liquid-phase sintering[J]. J Am Ceram Soc, 1992, 75(9): 2529–2534.
[3]MA S, XU Z, CHU R, et al. Influence of Cr2O3 on ZnO–Bi2O3–MnO2-based varistor ceramics[J]. Ceram Int, 2014, 40(7): 10149–10152.
[4]KIM Y H, KAWAMURA H, NAWATA M. The effect of Cr2O3 additive on the electrical properties of ZnO varistors[J]. J Mater Sci, 1997, 32(6): 1665–1670.
[5]KIM E D, KIM C H, OH M H. Role and effect of Co2O3 additive on the upturn characteristics of ZnO varistors[J]. J Appl Phys, 1985, 58(8): 3231–3235.
[6]EZHILVALAVAN S, KUTTY T. Dependence of non-linearity coefficients on transitionmetal oxide concentration in simplified compositions of ZnO+Bi2O3+MO varistor ceramics (M=Co or Mn)[J]. J Mater Sci Mater Electron, 1996, 7(2): 137–148.
[7]OTT J, LORENZ A, HARRER M, et al. The influence of Bi2O3 and Sb2O3 on the electrical properties of ZnO-based varistors[J]. J Electro Ceram, 2001, 6(2): 135–146.
[8]GULINO A, FRAGALA I. Deposition and characterization of transparent thin films of zinc oxide doped with Bi and Sb[J]. Chem. Mater, 2002, 14(1): 116–121.
[9]KANAI H, IMAI M. Effects of SiO2 and Cr2O3 on the formation process of ZnO varistors[J]. J Mater Sci, 1988, 23(12): 4379–4382.
[10]汪涛, 齐国权. 高压ZnO压敏电阻陶瓷材料研究进展[J]. 中国陶瓷, 2011, 12: 1–4,7.
WANG Tao, QI Guoquan. Chin Ceram (in Chinese), 2011, 12: 1–4,7.
[11]GUPTA T K. Application of zinc oxide varistors[J]. J Am Ceram Soc, 1990, 73(7): 1817–1840.
[12]张丛春, 周东祥, 龚树萍. 低压ZnO压敏电阻材料研究及发展概况[J]. 功能材料, 2001, 4: 343–347.
ZHANG C C, ZHOU D X, GONG S P. J Funct Mater(in Chinese), 2001, 4: 343–347.
[13]刘桂香, 徐光亮, 罗庆平, 等. 共沉淀法制备ZnO基纳米复合粉体及高压ZnO压敏电阻的电性能[J]. 硅酸盐学报, 2012, 3: 373–378.
LIU G X, XU G L, LUO Q P, et al. J Chin Ceram Soc, 2012, 3: 373–378.
[14]ZHAO H F, HU J, CHEN S M, et al. Tailoring the high impulse current discharge capability of ZnO varistor ceramics by-doping with Ga2O3[J]. Ceram Int, 2016, 42(4): 5582–5586.
[15]NAHM C W. Microstructure and varistor properties of Y2O3-doped ZnO–Pr6O11–CoO–Cr2O3–La2O3 ceramics[J]. Ceram Int, 2014, 40(1): 2477–2481.
[16]ZHAO H F, HE J L, HU J, et al. High nonlinearity and low residual-voltage ZnO varistor ceramics by synchronously doping Ga2O3 and Al2O3[J]. Mater Lett, 2016, 164(1): 80–83.
[17]WURST J C, NELSON I A. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics[J]. J Am Ceram Soc, 1972, 97(12): 109–111.
[18]KIM S S, CHO H G, CHOI I S, et al. A study on the microstructure and surge characteristics of ZnO varistor for distribution arrester[C]//International Conference on Power System Technology
Proceedings, Kunming, 2002–13–17.
[19]BAI H R, LI S H, ZHAO Y H, et al. Influence of Cr2O3 on highly nonlinear properties and low leakage current of ZnO–Bi2O3 varistor ceramics[J]. Ceram Int, 2016, 42(9): 10547–10550.
[20]TSAI J K, WU T B. Non–ohmic characteristics of ZnO–V2O5 ceramics[J]. J Appl Phys, 1994, 76(6): 4817–4822.
[21]TSAI J K, WU T B, Microstructure and nonohmic properties of binary ZnO–V2O5 ceramics sintered at 900 ℃[J]. Mater Lett, 1996, 26(5): 199–203.
[22]XIAO X K, ZHENG L Y, CHENG L H, et al. Effect of Cr2O3 on the property and microstructure of ZnO–Bi2O3 varistor ceramics in different sintering temperature[J]. Ceram Int, 2015, 41(Sup.1): S557–S562.
[23]MA S A, XU Z J, CHU R Q, et al. Influence of SnO2 on ZnO–Bi2O3–Co2O3 based varistor ceramics[J]. Ceram Int, 2015, 41(9): 12490–12494.
[24]XU Z J, BAI H R, MA S A, et al. Effect of a Bi–Cr–O synthetic multi-phase on the microstructure and electrical properties of ZnO–Bi2O3 varistor ceramics[J]. Ceram Int, 2016, 42(13): 14350–14354.
[25]PANDEY S, KUMAR D, PARKASH O, Electrical impedance spectroscopy and structural characterization of liquid-phase sintered ZnO–V2O5–Nb2O5 varistor ceramics doped with MnO[J]. Ceram Int, 2016, 42(8): 9686–9696.
|