[1] CHEN D L, GAO L. A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide[J]. Chem Phys Lett, 2005, 405(1): 159–164.
[2] DING Z X, WU W M, LIANG S J, et al. Selective-syntheses, characterizations and photocatalytic activities of nanocrystalline ZnTa2O6 photocatalysts[J]. Mater Lett, 2011, 65(11): 1598–1600.
[3] ZHANG X J, SHI W H, ZHU J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes[J]. Nano Research, 2010, 3(9): 643–652.
[4] YANG L X, ZHU Y J, TONG H, et al. Hierarchical β-Ni(OH)2 and NiO carnations assembled from nanosheet building blocks[J]. Cryst Growth Design, 2007, 7(12): 2716–2719.
[5] YUAN C Z, ZHANG X J, SU L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitor[J]. J Mater Chem, 2009, 19(32): 5772–5777.
[6] ZHU Z F, WEI N, LIU H, et al. Microwave-assisted hydrothermal synthesis of ni(oh)2 architectures and their in situ thermal convention to NiO[J]. Adv Powder Technol, 2011, 22(3): 422–426.
[7] WANG Y, ZHU Q S, ZHANG H J. Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process[J]. Chem Commun, 2006, 37(5): 5231–5233.
[8] DUAN G T, CAI W P, LUO Y Y, et al. A hierarchically structured Ni(OH)2 monolayer hollow-sphere array and its tunable optical properties over a large region[J]. Adv Funct Mater, 2007, 17(4): 644–650.
[9] LI Y M, LI W Y, CHOU S L, et al. Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres[J]. J Alloy Compd, 2008, 456(1): 339–343.
[10] WANG D B, SONG C X, HU Z S, et al. Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures[J]. Phys Chem B, 2005, 1009(3): 1125–1129.
[11] TAO F F, GUAN M Y, ZHOU Y M, et al. Fabrication of nickel hydroxide microtubes with micro-and nano-scale composite structure and improving electrochemical performance[J]. Cryst Growth Design, 2008, 8(7): 2157–2162.
[12] LI Y G, HASIN PANITAT, WU Y Y. NixCo3–xO4 nanowire arrays for electro catalytic oxygen evolution[J]. Adv Mater, 2010, 22(17): 1926–1929.
[13] WANG H W, HU Z A, CHANG Y Q, et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors[J]. J Mater Chem, 2011, 21 (28): 10504–10511.
[14] LIU X Y, SHI S J, XIONG Q Q, et al. Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high performance supercapacitor materials[J]. ACS Appl Mater Interface, 2013, 5(17): 8790–8795.
[15] 于丽秋, 陈书礼, 常莎. 泡沫镍负载的NiCo2O4纳米线阵列电极的超级电容性能[J]. 物理化学学报, 2011, 27(3): 615–619.
YU Liqiu, CHEN Shuli, CHANG Sha. J Phys Chem(in Chinese), 2011, 27(3): 615–619.
[16] LEI Y, LI J, WANG Y Y, et al. Rapid microwave-assisted green synthesis of 3d hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Appl Mater Interface, 2014, 6(3): 1773−1780.
[17] Yan T, Li R, Li Z, et al. A facile and scalable strategy for synthesis of size-tunable NiCo2O4, with nanocoral-like architecture for high-performance supercapacitors[J]. Electrochim Acta, 2014, 134: 384–392.
[18] WANG J G, NIU B, DU G D, et al. Microwave homogeneous synthesis of porous nanowire Co3O4 arrays with high capacity and rate capability for lithium ion batteries[J]. Mater Chem Phys, 2011, 126(3): 747–754.
[19] WANG J G, ZHENG S H, ZENG R, et al. Microwave synthesis of homogeneous YAG nanopowder leading to a transparent ceramic[J]. J Am Ceram Soc, 2009, 92(6): 1217–1223.
|