[1] KRANKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers [J]. Laser Photonics Rev, 2016, 10(4): 548?568.
[2] SOLOMON R, MUELLER L, Stimulated emission at 5985 Å from Pr3+ in LaF3[J]. Appl Phys Lett, 1963, 3(8): 135?137.
[3] GERMAN K R, KIEL A. Radiative and nonradiative transitions in LaCl3:Pr and PrCl3[J]. Phys Rev B, 1973, 8(5): 1846?1853.
[4] BARNES N P, GETTEMY D J. Temperature variation of the refractive indices of yttrium lithium fluoride[J]. J Opt Soc Am A, 1980, 70(10): 1244?1247.
[5] ESTEROWITZ L, ALLEN R, KRUER M, et al. Blue light emission by a Pr: LiYF4-laser operated at room temperature[J]. J Appl Phys, 1977, 48(2): 650?652.
[6] DANGER T, SANDROCK T, HEUMANN E, et al. Pulsed laser action of Pr:GdLiF4 at room temperature[J]. Appl Phys B, 1993, 57(3): 239?241.
[7] SANDROCK T, DANGER T, HEUMANN E, et al. Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature[J]. Appl Phys B, 1994, 58(2): 149?151.
[8] RICHTER A, HEUMANN E, OSIAC E, et al. Diode pumping of a continuous-wave Pr3+ doped LiYF4 laser[J]. Opt Lett, 2004, 29(22): 2638?2640.
[9] CORNACCHIA F, RICHTER A, HEUMANN E, et al. Visible laser emission of solid state pumped LiLuF4: Pr3+[J]. Opt Express, 2007, 15(3): 992?1002.
[10] METZ P, HASSE K, PARISI D, et al. Continuous-wave Pr3+:BaY2F8 and Pr3+:LiYF4 lasers in the cyan-blue spectral region[J]. Opt Lett, 2014, 39(17): 5158?5161.
[11] IIJIMA K, KARIYAMA R, TANAKA H, et al. In Power scaling and Q-switched operation of a Pr3+ doped YLF laser pumped by four high power InGaN-Blue-LDs[C]//Conference on Lasers and Electro-Optics/
Pacific Rim, Optical Society of America: 2015: 25B3?5.
[12] FIBRICH M, JELINKOVA H, Power-scaled Pr:YAlO3 laser at 747 and 720 nm wavelengths[J]. Laser Phys Lett, 2013, 10: 035801(1?4).
[13] MARZAHL D T, REICHERT F, METZ P W, et al. Efficient laser operation of diode-pumped Pr3+, Mg2+: SrAl12O19 [J]. Appl Phys B, 2014, 116(1): 109?113.
[14] 程振祥, 张树君, 韩建儒, 等. 掺镨硼酸钙氧钆 (GdCOB:Pr) 晶体的光谱性能[J]. 功能材料, 2001, 32(5): 537?538.
CHENg Zhenxiang, ZHANG Shujun, HAN Jianru, et al. Funct Mater (in Chinese), 2001, 32(5): 537?538.
[15] 邹玉林, 吴敬朋, 臧竞存, 等. 掺镨钒酸钆晶体的研究[J]. 人工晶体学报, 2008, 37(3): 528?531.
ZOU Yulin, WU Jingpeng, ZANG Jingcun, et al. J Synth Cryst (in Chinese), 2008, 37(3): 528?531.
[16] CAI G, ZHOU M, LIU Z, et al. Spectroscopic analysis of Pr3+:Gd3Ga5O12 crystal as visible laser material[J]. Opt Mater, 2010, 33(2): 191?195.
[17] 罗明. Pr3+:YLF 晶体激光特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LUO Ming. Study of the laser properties of the Pr3+:YLF crystal(in Chinese, dissertation). Harbin: Harbin Institute of Technology, 2010.
[18] LI, X, YU X, YAN R, et al. Optical and laser properties of Pr3+:YLF crystal[J]. Laser Phys Lett, 2011, 8(11): 791?794.
[19] DONG Y, LI S, ZHANG X. All-solid-state blue laser pumped Pr:KY3F10-BBO ultraviolet laser at 305 nm[J]. Laser Phys Lett, 2012, 9(2): 116?119.
[20] FU X, LI Y, JIANG H. Diode-pumped Pr3+:YAlO3/LBO violet laser at 374 nm[J]. Laser Phys, 2011, 21(5): 864?866.
[21] LUO S, YAN X, CUI Q, et al. Power scaling of blue-diode-pumped Pr: YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm[J]. Opt Commun, 2016, 380: 357?360.
[22] KOJOU J, ABE R, KARIYAMA R, et al. InGaN diode pumped actively Q-switched intracavity frequency doubling Pr:LiYF4 261 nm laser[J]. Appl Opt, 2014, 53(10): 2030?2036.
[23] KOJOU J, ABE R, SAKURAI A, et al. In Intracavity frequency doubling at 261nm of an actively Q-switched Pr: LiYF4 laser[C]//Conference on Lasers and Electro-Optics/Pacific Rim, Optical Society of America: 2013: 1.
[24] KOJOU J, WATANABE Y, KOJIMA Y, et al. In Q-switching of Pr3+-doped LiYF4 visible lasers pumped by a high-power GaN diode laser[C]//Conference on Lasers and Electro-Optics, Optical Society of America, 2010: 116.
[25] KOJOU J, WATANABE Y, KOJIMA Y, et al. Intracavity second-harmonic generation at 320 nm of an actively Q-switched Pr:LiYF4 laser [J]. Appl Opt, 2012, 51(9): 1382?1386.
[26] ABE R, KOJOU J, MASUDA K. Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639 nm Pr3+-doped LiYF4 laser[J]. Appl Phys Express, 2013, 6(3): 032703(1?3).
[27] KANNARI F, ABE R, KOJOU J. In Saturable absorption of Cr:YAG Crystal in visible region for passively Q-switched Pr:YLF laser[C]//Nonlinear Photonics, Optical Society of America, 2012: 21.
[28] SAVITSKI V, RANIERI I, KRYMA A B, et al. In Passively Q-switched Pr: YLF laser[C]//CLEO: Science and Innovations, Optical Society of America, 2011: 7.
[29] TANAKA H, KARIYAMA R, KOJOU J, et al. In intracavity second harmonic generation of passively Q-switch mode locked Pr3+-doped fluoride lasers using Cr4+:YAG saturable absorber[C]//CLEO: Science and Innovations, Optical Society of America, 2014: 7.
[30] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666?669.
[31] YU H, ZHANG H, WANG Y, et al. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser Photonics Rev, 2013, 7(6): L77?L83.
[32] WANG S, YU H, ZHANG H, et al. Broadband few-layer MoS2 saturable absorbers[J]. Adv Mater, 2014, 26(21): 3538?3544.
[33] FUJIMOTO Y, SUZUKI T, OCHANTE R, et al. Generation of orange pulse laser in waterproof fluoride glass fibre with graphene thin film[J]. Electron Lett, 2014, 50(20): 1470?1472.
[34] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Phys Rev Lett, 2010, 105(13): 136805(1?4).
[35] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271?1275.
[36] KARIYAMA R, TANAKA H, KOJOU J, et al. In Passive Q-switching of visible Pr3+:LiYF4 Laser with Cr4+:YAG saturable absorber and intracavity second harmonic generation at DUV[C]//Advanced Solid State Lasers, Optical Society of America, 2014: 19.
[37] ZHANG Y, WANG S, WANG G, et al. Atomic-layer molybdenum sulfide passively modulated green laser pulses[J]. IEEE Photonic Tech Lett, 2016, 28(2): 197?200.
[38] ZHANG Y, WANG S, YU H, et al. Atomic-layer molybdenum sulfide optical modulator for visible coherent light [J]. Sci Rep, 2015, 5: 11342 (1?7).
[39] WANG S, ZHANG Y, XING J, et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers[J]. Appl Phys Lett, 2015, 107(16): 161103(1?5).
[40] CHENG Y, PENG J, XU B, et al. Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber[J]. IEEE Photonic J, 2016, 8(3): 1?6.
[41] CHENG Y, PENG J, XU B, et al. Passive Q-switching of Pr:LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber[J]. Opt Laser Technol, 2017, 88: 275?279.
[42] XU B, LUO S, YAN X, et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers[J]. IEEE J Sel Top Quant Electron, 2017, 23(5): 1?7.
[43] RUNAN S C, SUTHERLAND J, FRENCH P, et al. Kerr lens modelocked solid state laser in the red (639 nm) [J]. Electron Lett, 1994, 30(19): 1601?1602.
[44] RUNAN S, CHAI B, SUTHERLAND J, et al. Kerr-lens mode-locked visible transitions of a Pr:YLF laser [J]. Opt Lett, 1995, 20(9): 1041–1043.
[45] SUTHERLAND J, CHAI B, FRENCH P, et al. Visible continuous-wave laser transitions in Pr3+:YLF and femtosecond pulse generation[J]. Opt Lett, 1996, 21(11): 797?799.
[46] BEK R, KAHLE H, SCHWARZBACK T, et al. Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses [J]. Appl Phys Lett, 2013, 103(24): 242101(1?4).
[47] RANTA S, HARKONEN A, LEINONEN T, et al. Mode-locked VECSEL emitting 5 ps pulses at 675 nm [J]. Opt Lett, 2013, 38(13): 2289?2291.
[48] GAPONENKO M, METZ P W, HARKONEN A, et al. SESAM mode-locked red praseodymium laser [J]. Opt Lett, 2014, 39(24): 6939?6941.
[49] NOLTE S, MOMMA C, JACOBS H, et al. Ablation of metals by ultrashort laser pulses[J]. J Opt Soc Am B, 1997, 14(10): 2716?2722.
[50] LOESEL F, FISCHER J, GOTZ M, et al. Non-thermal ablation of neural tissue with femtosecond laser pulses[J]. Appl Phys B, 1998, 66(1): 121?128.
[51] HONNINGER C, PASCHOTTA R, MORIER GENOUD F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. J Opt Soc Am B, 1999, 16(1): 46?56.
[52] KORN T, HEYDRICH S, HIRMER M, et al. Low-temperature photocarrier dynamics in monolayer MoS2 [J]. Appl Phys Lett, 2011, 99(10): 102109(1?3).
[53] WANG R, RUZICKA B A, KUMAR N, et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide [J]. Phys Rev B, 2012, 86(4): 045406(1?5).
[54] ZHAO G, HAN S, WANG A, et al. “Chemical weathering” exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties[J]. Adv Funct Mater, 2015, 25(33): 5292?5299.
[55] GARMIRE E. Resonant optical nonlinearities in semiconductors[J]. IEEE J Sel Top Quant Electron, 2000, 6(6): 1094?1110.
[56] AULL B F, JENSSEN H P, Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections[J]. IEEE J Quant Electron, 1982, 18(5): 925?930.
[57] BAO Q, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Adv Funct Mater, 2009, 19(19): 3077?3083.
[58] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831–838.
|