[1] 郭海涛, 陆敏, 陶光明, 等. 中红外发光稀土掺杂硫系玻璃的研究进展[J]. 硅酸盐学报, 2009, 37(12): 2150?2156.
GUO Haitao, LU Min, TAO Guangming, et al. J Chin Ceram Soc, 2009, 37(12): 2150?2156.
[2] 王勇超, 夏海平, 章践立, 等. Tm3+和Ho3+双掺锗铌酸盐玻璃的中红外发光性质[J]. 硅酸盐学报, 2010, 38(11): 2085?2089.
WANG Yongchao, XIA Haiping, ZHANG Jianli, et al. J Chin Ceram Soc, 2010, 38(11): 2085?2089.
[3] CORNACCHIA F, SANI E, TONCELLI A, et al. Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho:YLF and Tm-Ho:BaYF : A comparative analysis[J]. Appl Phys B, 2002, 75(8): 817?822.
[4] BRAUD A, TIGREAT P Y, DOUALAN J L, et al. Spectroscopy and cw operation of a 1.85 μm Tm:KY3F10 laser[J]. Appl Phys B, 2001, 72(8): 909?912.
[5] LAPORTA P, MARANO M, PALLARO L, et al. Amplitude and frequency stabilisation of a Tm–Ho:YAG laser for coherent lidar applications at 2.1 μm[J]. Opt Laser Eng, 2002, 37(5): 447?457.
[6] WU C T, JU Y L, WANG Z G, et al. Lasing characteristics of a CW Tm:LuAG laser with a set of double cavity[J]. Laser Phys Lett, 2008, 5(7): 510–513.
[7] ELDER I F, PAYNE M J P. YAP versus YAG as a diode-pumped host for thulium[J]. Opt Commun, 1998, 148(s4/6): 265–269.
[8] MATKOVSKII A O, SAVYTSKII D I, SUGAK D Y, et al. Growth and properties of YAlO3:Tm single crystals for 2μm laser operation[J]. J Cryst Growth, 2002, 241(4): 455–462.
[9] HE W J, YAO B Q, JU Y L, et al. Diode-pumped efficient Tm,Ho:GdVO4 laser with near-diffraction limited beam quality[J]. Opt Express, 2006, 14(24): 11653–11659.
[10] YU H, PAN Z, ZHANG H, et al. Efficient Tm:LuVO4 laser at 1.9 μm[J]. Opt Lett, 2011, 36(13): 2402?2404.
[11] SCHELLHORN M. High-power diode-pumped Tm:YLF laser[J]. Appl Phys B, 2008, 91(1): 71?74.
[12] DUAN X M, YAO B Q, ZHANG Y J, et al. Diode-pumped high efficient Tm:YLF laser output at 1908 nm with near-diffraction limited beam quality[J]. Laser Phys Lett, 2010, 5(5): 347-349.
[13] COLUCCELLI N, GALZERANO G, CORNACCHIA F, et al. High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 microm.[J]. Opt Lett, 2009, 34(22): 3559?3561.
[14] WALSH B M, BARNES N P, PETROS M, et al. Spectroscopy and modeling of solid state lanthanide lasers: Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4[J]. J Appl Phys, 2004, 95(7): 3255?3271.
[15] EULER F, BRUCE J A. Oxygen coordinates of compounds with garnet structure[J]. Acta Crystallogr, 1965, 19(6): 971?978.
[16] RILEY M J, KRAUSZ E R, MANSON N B, et al. Selectively excited luminescence and magnetic circular dichroism of Cr4+-doped YAG and YGG [J]. Phys Rev B, 1999, 59(3): 1850?1856.
[17] YU H, WU K, YAO B, et al. Efficient triwavelength laser with a Nd:YGG garnet crystal[J]. Opt Lett, 2010, 35(11): 1801?1803.
[18] MCCUMBER D E. Einstein Relations Connecting Broadband Emission and Absorption Spectra[J]. Phys Rev, 1964, 136(4A): A954?A957.
[19] WALSH B M, BARNES N P, Bartolo B D. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4[J]. J Appl Phys, 1998, 83(5): 2772?2787.
[20] PAYNE S A, CHASE L L, SMITH L K, et al. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+[J]. IEEE J Quantum Electron, 1992, 28(11): 2619?2630.
[21] 宋平新, 赵志伟, 徐晓东, 等. Tm:YAG晶体的生长及吸收特性[J]. 人工晶体学报, 2004, 33(3): 376?379.
SONG Pingxin , ZHAO Zhiwei , XU Xiaodong, et al. J Synth Cryst (in Chinese), 2004, 33(3): 376?379.
[22] STONEMAN R C, ESTEROWITZ L. Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers[J]. Opt Lett, 1990, 15(9): 486?488.
|