首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
La0.65Sr0.2Gd0.15MnO3纳米颗粒的制备及其磁热效应
作者:孔祥宇 邹正光 
单位:桂林理工大学材料科学与工程学院 有色金属及材料加工新技术教育部重点实验室 广西 桂林 541004 
关键词:磁热效应 Curie温度 钙钛矿 
分类号:TM27;TB64
出版年,卷(期):页码:2018,46(3):377-381
DOI:
摘要:
采用Pechini法制备了La0.65Sr0.35–xGdxMnO3系列纳米多晶样品,X射线衍射数据分析表明样品具有单一的菱面体钙钛结构,用扫描电子显微镜观察了样品的形貌,用超导量子干涉仪测量了样品的磁性随外场和温度的变化,确定了样品的Curie温度。发现Gd掺杂量为x=0.15时,Curie温度处于室温附近,根据Maxwell’s关系计算了该样品在不同磁场强度下的磁熵变及相对制冷能力。磁性测量及计算结果表明:制备的样品Curie温度在280~350 K的范围内,随着Gd3+掺杂浓度增加而下降,其中,La0.65Sr0.2Gd0.15MnO3样品在300 K、H=3.0 T的外场下磁熵变为1.87 J/(kg·K),相对制冷能力达到215.76 J/kg,由Banerjee判据确定材料在Curie温度附近发生了二级相变。该材料的Curie温度在室温附近并且具有较大的磁熵变及相对制冷效率,所需外场强度适中,性能稳定,适合做室温磁制冷材料。
 
 
 
 
 
 

 Polycrystalline perovskite-type manganite La0.65Sr0.35–xGdxMnO3(x=0–0.2) was prepared by Pechini method. The crystalline phases of the samples were carried out by X-ray powder diffraction with Cu Kα radiation from 20° to 80°. The X-ray diffraction results revealed all the samples exhibits rhombohedra perovskite structure. The morphologies of samples were respected by scanning electron microscope. Magnetic properties and Curie temperature are measured by superconducting quantum interference device. Magnetization as a function of temperature shows that all samples exhibit a paramagnetic-ferromagnetic phase transition at the Curie temperature. The Curie temperature is found to decrease from 350 to 280 K upon Gd doping from 0 to 0.2. For x=0.15, the Curie temperature of the sample was determined to be 300 K. The magnetic entropy change deduced from the measured magnetization data using Maxwell relation. The maximum value of isothermal entropy change is found to be 1.87 J/(kg·K) under a magnetic field change of 3 T and about 215.76 J/kg of relative cooling power was obtained near the Curie temperature. The first-order or the second-order on the phase transition of the manganite was distinguished by Banerjee criteria. The high relative cooling power value and the absence of magnetic hysteresis suggest the studied sample can have potential applications for magnetic refrigeration near room temperature.

 
 
 
 
 
基金项目:
国家自然科学基金(51562006)资助。
作者简介:
孔祥宇(1992—),男,硕士研究生。
参考文献:

 [1] PECHARSKY V K, CUI J, JOHNSON D D. (Mag-neto) caloric

refrigeration: is there light at the end of the tunnel?[J].Philos Trans A
Math Phys Eng Sci, 2016, 374(2074): 20150305
[2] SMITH A, BAHL C R H, BJØRK R, et al. Materials challenges for
high performance magnetocalori-c refrigeration devices[J].Adv Energy
Mater, 2012, 2(11): 1288–1318.
[3] OBAYASHI H, SAKURAI Y, GEJO T. Perovskitetype oxides as
ethanol sensors[J]. J Solid State Chem, 1976, 17(3): 299–303.
[4] SKINI R, KHLIFI M, TRIKI M, et al. Magnetocaloric effect of
perovskite manganites La0.7□0.1Ca0.2MnO3[J].Chem Phys, 2015, 452:
67–70.
[5] KAMAN O, EJ, HEJTMÁNEK J, et al. Effects of Tb3+ dopants in the
La1–xSrxMnO3 bulk and nanoparticle ferromagnets[J]. J Phys: Condens
Matter, 2016, 28(20): 206001–206008.
[6] ZENER C. Interaction between the d-shells in the transition metals. ii.
ferromagnetic compounds of manganese with perovskite structure[J].
Phys Rev, 1951, 82(3): 403–405.
[7] CO?KUN A, TA?ARKUYU E, IRMAK A E, et al. The structural,
magnetic, and magnetocaloric properties of La1−xAgxMnO3
0.05≤x≤0.25)[J]. J Supercond Nov Magn, 2016, 29(8): 2075–2084.
[8] DATTA S, GHATAK A, GHOSH B. Manganite (La1−xAxMnO3; A=Sr,
Ca) nanowires with adaptable stoichiometry grown byhydrothermal
method: understanding of growth mechanism using spatially resolved
techniques[J]. JMater Sci, 2016, 51(21): 9679–9695.
[9] SFIFIR I, EZAAMI A, CHEIKHROUHOU-KOUBAA W, et al.
Structural, magnetic and magnetocaloric properties in
La0.7–xDyxSr0.3MnO3 manganites (x=0.00, 0.01 and 0.03)[J]. J Alloys
Compd, 2017, 696: 760–767.
[10] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Sci Nat,
1926, 14(21): 477–485.
[11] JERBI A, KRICHENE A, THALJAOUI R, et al. Structural, magnetic,
and electrical study of polycrys-talline Pr0.55Sr0.45−xNaxMnO3(x = 0.05
and 0.1)[J]. J Supercond Nov Magn, 2015, 29(1): 123–132.
[12] XU L, CHEN L, FAN J, et al. Roomtemperature large magnetocaloric
effect and critical behavior in La0.6Dy0.1Sr0.3MnO3[J]. Ceram Int, 2016,
42(7): 8234–8239.
[13] JERBI A, THALJAOUI R, KRICHENE A, et al. Structural, magnetic
and electrical study of polycrystalline Pr0.55Sr0.45−xKxMnO3 (x=0, 0.05
and 0.1)[J]. Phys B, 2014, 442(1): 21–28.
[14] ARROTT A. Criterion for Ferromagnetism from observations of
magnetic isotherms[J]. Phys Rev, 1957, 108(6): 1394–1396.
[15] RAOUFI T, EHSANI M H, KHOSHNOUD D S. Magnetocaloric
properties of La0.6Sr0.4MnO3 prepared by solid state reaction method[J].
J Alloys Compd, 2016, 689: 865–873.
[16] LYUBINA J. Magnetocaloric materials for energy efficient cooling[J].
J Phys D: Appl Phys, 2017, 50(5): 053002
[17] SHINDE K P, DESHPANDE N G, EOM T, et al. Solution-combustion
synthesis of La0.65Sr0.35MnO3 and the magnetocaloric properties[J].
Mater Sci Eng B, 2010, 167(3): 202–205.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com