[1] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory
diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5):
1347–1364.
[2] GUO S Q. Densification of ZrB2-based composites and their
mechanical and physical properties: A review[J]. J Eur Ceram Soc,
2009, 29(6): 995–1011.
[3] SONBER J K, SURI A K. Synthesis and consolidation of zirconium
diboride: review[J]. Adv Appl Ceram, 2011, 110(6): 321–334.
[4] WEI C C, LIU X C, NIU J Y, et al. High temperature mechanical
properties of laminated ZrB2–SiC based ceramics[J]. Ceram Int, 2016,
42(16): 18148–18153.
[5] WANG H L, FAN B B, FENG L, et al. The fabrication and mechanical
properties of SiC/ZrB2 laminated ceramic composite prepared by spark
plasma sintering[J]. Ceram Int, 2012, 38(6): 5015–5022.
[6] ZAMORA V, ORTIZ A L, GUIBERTEAU F, et al. Spark-plasma
sintering of ZrB2 ultra-high temperature ceramics at lower temperature
via nanoscale crystal refinement[J]. J Eur Ceram Soc, 2012, 32(10):
2529–2536.
[7] ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength
of hot pressed ZrB2–20vol.% SiC ceramics based on ZrB2 starting
powders prepared by different carbo/boro-thermal reduction routes[J].
J Eur Ceram Soc, 2013, 33(10): 1609–1614.
[8] XIE Z P, LI S, AN L N, et al. A novel oscillatory pressure-assisted hot
pressing for preparation of high-performance ceramics[J]. J Am Ceram
Soc, 2014, 97(4): 1012–1015
[9] CAO Y N, ZHANG H J, LI F L, et al. Preparation and characterization
of ultrafine ZrB2–SiC composite powders by a combined sol–gel and
microwave boro/carbothermal reduction method[J]. Ceram Int, 2015,
41(6): 7823–7829.
[10] WANG R Z, LI W G. Effects of microstructures and flaw evolution on
the fracture strength of ZrB2–MoSi2 composites under high
temperatures[J]. J Alloys Compd, 2015, 644: 582–588.
[11] GANG S, ZHAO X T, WANG H L, et al. ZrB2–ZrSi2–SiC composites
prepared by reactive spark plasma sintering[J]. Int J Refract Met Hard
Mater, 2016, 60: 104–107.
[12] HU P, WANG G L, WANG Z. Oxidation mechanism and resistance of
ZrB2–SiC composites[J]. Corros Sci, 2009, 51(11): 2724–2732.
[13] MONTEVERDE F. The addition of SiC particles into a MoSi2-doped
ZrB2 matrix: Effects on densification, microstructure and
thermo-physical properties[J]. Mater Chem Phys, 2009, 113(2):
626–633.
[14] SILVESTRONI L, SCITI D. Tem analysis, mechanical characterization
and oxidation resistance of a highly refractory ZrB2 composite[J]. J
Alloys Compd, 2014, 602(1): 346–355.
[15] 候俊楠. Mo-SiBCN 梯度复合材料组织结构设计与抗热震性能[D].
哈尔滨工业大学, 2016.
HOU Junnan. The structure design and thermal shock resistance of
Mo–SiBCN gradient composites (in Chinese, dissertation). Harbin:
Harbin Institute of Technology, 2016.
[16] 潘昆明, 张来启, 王珏等. Mo-Si-B 三元系中T2 相合金制备及其室
温力学性能[J]. 稀有金属材料与工程, 2013, 42(5): 1080–1084.
PAN Kunming, ZHANG Laiqi, WANG Yu, et al. Rare Met Mater Eng
(in Chinese), 2013, 42(5): 1080–1084.
[17] ZOU J, SUN S K, ZHANG G J, et al. Chemical reactions, anisotropic
grain growth and sintering mechanisms of self-reinforced ZrB2–SiC
doped with WC[J]. J Am Ceram Soc, 2011, 94(5): 1575–1583
|