首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Mo–Si–B对ZrB2超高温陶瓷烧结工艺和性能的影响
作者:赵笑统1 赵新阳1 李智强1 卢绪高1 邵刚1 马世晨1 王海龙1 张锐2 
单位:1. 郑州大学材料科学与工程学院 郑州 450001 2. 郑州航空工业管理学院 郑州 450015 
关键词:二硼化锆 钼硅硼合金 抗氧化 热压烧结 
分类号:TB3
出版年,卷(期):页码:2018,46(3):382-387
DOI:
摘要:
针对ZrB2陶瓷材料的断裂韧性低及抗氧化性能差等问题,选择Mo粉、Si粉和B粉为第二相添加物,借助Mo–Si–B间的原位反应生成Mo5SiB2等三元或二元化合物与ZrB2复合,提高ZrB2陶瓷的断裂韧性与抗氧化性能。将混合粉体在1 900 ℃、20 MPa的条件下经热压烧结制备出致密的ZrB2陶瓷复合材料,所烧结样品的抗弯强度和断裂韧性随着Mo–Si–B含量的增加呈现先增加再降低再增加的趋势,当Mo–Si–B含量为20%(体积分数)时所得样品的断裂韧性最大,其值为(5.55±0.11) MPa·m1/2,当Mo–Si–B含量为30%时所得样品的抗弯强度最大,其值为(500±40) MPa。所烧结的样品都具有良好的抗氧化性能,其主要机理是在复合材料表面形成一定数量的玻璃相,阻止氧气向材料内部扩散。
 
 

 

 Mo, Si and B powders were used as second phase aids to improve the fracture toughness and the oxidation resistance of ZrB2 ceramic. The dense ZrB2–Mo–Si–B ceramic composites were fabricated via hot pressing at 20 MPa and 1 900 ℃ for 1 h due to the in-situ reaction between Mo–Si–B. The flexural strength and fracture toughness of the sintered samples firstly increase, then decrease and further increase with the amount of Mo–Si–B increasing. ZrB2–20% (volume fraction) Mo–Si–B composite has the maximum fracture toughness of (5.55±0.11) MPa·m1/2. ZrB2–30%Mo–Si–B composite has the maximum bending strength of (500±40) MPa. All the sintered samples show a good oxidation resistance due to the glassy phase formed on the surface of composites, preventing the inner-transformation of oxidation.

 
 
 
 
 
基金项目:
河南省高校科技创新人才(15HASTIT009);中国博士后科学基金(2016T90677,2014M561997);国家自然科学基金(51772275)资助。
作者简介:
赵笑统(1989—),男,博士研究生。
参考文献:

 [1] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory

diborides of zirconium and hafnium[J]. J Am Ceram Soc, 2007, 90(5):
1347–1364.
[2] GUO S Q. Densification of ZrB2-based composites and their
mechanical and physical properties: A review[J]. J Eur Ceram Soc,
2009, 29(6): 995–1011.
[3] SONBER J K, SURI A K. Synthesis and consolidation of zirconium
diboride: review[J]. Adv Appl Ceram, 2011, 110(6): 321–334.
[4] WEI C C, LIU X C, NIU J Y, et al. High temperature mechanical
properties of laminated ZrB2–SiC based ceramics[J]. Ceram Int, 2016,
42(16): 18148–18153.
[5] WANG H L, FAN B B, FENG L, et al. The fabrication and mechanical
properties of SiC/ZrB2 laminated ceramic composite prepared by spark
plasma sintering[J]. Ceram Int, 2012, 38(6): 5015–5022.
[6] ZAMORA V, ORTIZ A L, GUIBERTEAU F, et al. Spark-plasma
sintering of ZrB2 ultra-high temperature ceramics at lower temperature
via nanoscale crystal refinement[J]. J Eur Ceram Soc, 2012, 32(10):
2529–2536.
[7] ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength
of hot pressed ZrB2–20vol.% SiC ceramics based on ZrB2 starting
powders prepared by different carbo/boro-thermal reduction routes[J].
J Eur Ceram Soc, 2013, 33(10): 1609–1614.
[8] XIE Z P, LI S, AN L N, et al. A novel oscillatory pressure-assisted hot
pressing for preparation of high-performance ceramics[J]. J Am Ceram
Soc, 2014, 97(4): 1012–1015
[9] CAO Y N, ZHANG H J, LI F L, et al. Preparation and characterization
of ultrafine ZrB2–SiC composite powders by a combined sol–gel and
microwave boro/carbothermal reduction method[J]. Ceram Int, 2015,
41(6): 7823–7829.
[10] WANG R Z, LI W G. Effects of microstructures and flaw evolution on
the fracture strength of ZrB2–MoSi2 composites under high
temperatures[J]. J Alloys Compd, 2015, 644: 582–588.
[11] GANG S, ZHAO X T, WANG H L, et al. ZrB2–ZrSi2–SiC composites
prepared by reactive spark plasma sintering[J]. Int J Refract Met Hard
Mater, 2016, 60: 104–107.
[12] HU P, WANG G L, WANG Z. Oxidation mechanism and resistance of
ZrB2–SiC composites[J]. Corros Sci, 2009, 51(11): 2724–2732.
[13] MONTEVERDE F. The addition of SiC particles into a MoSi2-doped
ZrB2 matrix: Effects on densification, microstructure and
thermo-physical properties[J]. Mater Chem Phys, 2009, 113(2):
626–633.
[14] SILVESTRONI L, SCITI D. Tem analysis, mechanical characterization
and oxidation resistance of a highly refractory ZrB2 composite[J]. J
Alloys Compd, 2014, 602(1): 346–355.
[15] 候俊楠. Mo-SiBCN 梯度复合材料组织结构设计与抗热震性能[D].
哈尔滨工业大学, 2016.
HOU Junnan. The structure design and thermal shock resistance of
Mo–SiBCN gradient composites (in Chinese, dissertation). Harbin:
Harbin Institute of Technology, 2016.
[16] 潘昆明, 张来启, 王珏等. Mo-Si-B 三元系中T2 相合金制备及其室
温力学性能[J]. 稀有金属材料与工程, 2013, 42(5): 1080–1084.
PAN Kunming, ZHANG Laiqi, WANG Yu, et al. Rare Met Mater Eng
(in Chinese), 2013, 42(5): 1080–1084.
[17] ZOU J, SUN S K, ZHANG G J, et al. Chemical reactions, anisotropic
grain growth and sintering mechanisms of self-reinforced ZrB2–SiC
doped with WC[J]. J Am Ceram Soc, 2011, 94(5): 1575–1583
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com