首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
钠离子电池正负极材料研究新进展
作者:潘都1 2 戚兴国1 刘丽露1 蒋礼威1 陆雅翔1 白莹2 胡勇胜1 陈立泉1 
单位:1. 中国科学院物理研究所清洁能源实验室 北京 100190  2. 河南大学物理与电子学院 河南大学光伏材料重点实验室 河南 开封 475004 
关键词:规模储能 钠离子电池 正极材料 负极材料。 
分类号:TM911
出版年,卷(期):页码:2018,46(4):0-0
DOI:
摘要:
锂离子电池由于能量密度高、循环寿命长等优点在储能领域备受关注,但锂资源稀缺与分布不均制约了其大规模应用。基于与锂离子电池相似离子穿梭原理的钠离子电池由于钠资源丰富、成本低廉、适合于大规模储能等优点近年来发展迅速。本文介绍一些典型的钠离子电池正负极材料的研究新进展,评述其应用可行性及目前面临的问题,为长寿命、低成本钠离子电池的设计与开发提供参考依据。
 
基金项目:
基金项目:国家重点研发计划(2016YFB0901504)项目;国家自然科学基金(11234013,51421002,51472268,51672069) 项目;中国科学院“百人计划”项目。
作者简介:
第一作者:潘 都(1989―),男,博士研究生。
参考文献:
[1] CHEN Haisheng, CONG Thang Ngoc, YANG Wei, et al. Progress in electrical energy storage system: A critical review[J]. Prog Nat Sci, 2009, 19: 291–312.
[2] ZHU Ming. Discussion on the energy storage battery technology[J]. Mag Equip Mach, 2010, (3): 24–29.
[3] YOON Seong-Jun, KIM Jong H, KIM Kil Suk, et al. Liquid crystals: Mesomorphic organization and thermochromic luminescence of dicyanodistyrylbenzene–based phasmidic molecular disks: Uniaxially aligned hexagonal columnar liquid crystals at room temperature with enhanced fluorescence emission and semiconductivity[J]. Adv Funct Mater, 2012, 22(1): 61–69.
[4] PALOMARES Veronica, SERRAS Paula, VILLALUENGA Irune, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ Sci, 2012, 5(3): 5884–5901.
[5] HWANG Jang-Yeon, MYUNG Seung-Taek, SUN Yang-Kook, et al. Sodium-ion batteries: present and future[J]. Chem Soc Rev, 2017,46: 3529–3614.
[6] SLATER Michael D, KIM Donghan, LEE Eungje, et al. Sodium-ion batteries[J]. Adv Funct Mater, 2013, 23(8): 947–958.
[7] LI Yunming, LU Yaxiang, HU Yong-Sheng, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Mater, 2017, 7: 130–151.
[8] DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Phys B+C, 1980, 99(1/4): 81–85.
[9] YABUUCHI Naoaki, KUBOTA Kei, DAHBI Mouad, et al. Research development on sodium-ion batteries[J]. Chem Rev, 2014, 114: 11636–11682.
[10] NAYAK Prasant Kumar, YANG Liangtao, BREHM Wolfgang, et al. From lithium-ion to sodium-ion batteries: A materials perspective[J]. Angew Chem Int Ed, 2017, 03:772–792.
[11] BERTHELOT R. CARLIER D, DELMAS C. Electrochemical investigation of the P2–NaxCoO2 phase diagram[J]. Nat Mater, 2011, 10(1): 74–80.
[12] SINGH Gurpreet, ACEBEDO Begoña, CABANAS Montse Casas, et al. An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2[J]. Electrochem Commun, 2013, 37: 61–63.
[13] XU Jing, LEE Dae Hoe, CLÉMENT Raphaële J, et al. Identifying the critical role of Li substitution in P2–Nax[LiyNizMn1–y–z]O2[J]. Chem Mater, 2014, 26:1260–1269.
[14] MU Linqin, XU Shuyin, HU Yong-Sheng, et al. Prototype sodium-ion batteries using air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv Mater, 2015, 27: 6928–6933.
[15] XU Shuyin, WU Xiaoyan, HU Yong-sheng, et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chin Phys B, 2014, 23(11): 107–110.
[16] MU Linqin, XU Shuyin, HU Yong-sheng, et al. Prototype sodium-ion batteries using air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Adv Mater, 2015, 27: 6928–6933.
[17] SCHMIDT Whitney, BERTHELOT Romain, SLEIGHT A W, et al. Solid solution studies of layered honeycomb-ordered phases O3-Na3M2SbO6 (M= Cu, Mg, Ni, Zn)[J]. J Solid State Chem, 2013, (201): 178–185.
[18] YUAN Dingding, LIANG Xinmiao, WU Lin, et al. A honeycomb- layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries[J]. Adv Mater, 2014, 26(36): 6301–6306.
[19] WANG Yuesheng, LIU Jue, HU Yong-sheng, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nat Commun, 2015, 6: 6401(10).
[20] XU Shuyin, WANG Yuesheng, HU Yongsheng, et al. Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5: 1501156(9).
[21] PARANT Jean-paul, OLAZCUAGA Roger, DEVALETTE Michel, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x?1)[J]. J Solid State Chem, 1971, 3(1): 1–11.
[22] CAO Yuliang, XIAO Lifen, WANG Wei, et al. Reversible Sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Adv Mater, 2011, (23): 3155–3160. 
[23] LI Zheng, YOUNG David, XIANG Kai, et al. High energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Adv Energy Mater, 2013, 3: 290–294.
[24] LIU Jue, HU Yongsheng, et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nat Commun, 2015, 6: 6401(10).
[25] WANG Yuesheng, MU Linqin, HU Yongsheng, et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Adv Energy Mater, 2015, 5: 1501005(8).
[26] OH Seung-Min, MYUNG Seung-Taek, HASSOUN Jusef, et al. Reversible NaFePO4 electrode for sodium secondary batteries[J]. Electrochem Commun, 2012, 22: 149–152. 
[27] MOREAU P, GUYOMARD D, GAUBICHER J, et al. Structure and stability of sodium intercalated phases in olivine FePO4[J]. Chem Mater, 2010, 22: 4126–4128.
[28] LI Chun, MIAO Xue, CHU Wei, et al. Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries[J]. J Mater Chem A, 2015, 3: 8265–8271.
[29] ZHU Yujie, XU Yunhua, LIU Yihang, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780–787.
[30] NAKAYAMA Masanobu, YAMADA Shohei, JALEM Randy, et al. Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries[J]. Solid State Ion, 2016, 286: 40–44.
[31] GALCERAN Montserrat, SAUREL Damien, ACEBEDO Begon˜a, et al. The mechanism of NaFePO4(de) sodiation determined by in situ X-ray diffraction[J]. PCCP, 2014, 16(19): 8837–8842.
[32] JIAN Z, ZHAO L, PAN H, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochem Commun, 2012, 14: 86–89.
[33] JIAN Zelang, HAN Wenze, LU Xia, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Adv Energy Mater, 2013, 3:156–160.
[34] REN Wenhao, ZHENG Zhiping, XU Chang, et al. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries[J]. Nano Energy, 2016, 25: 145–153.
[35] LI Hui, BAI Ying, WU Feng, et al. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries[J]. J Power Sources, 2015, 273: 784–792.
[36] LIU Jun, TANG Kun, SONG Kepeng, et al. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries[J]. Nanoscale, 2014, 6: 5081–5086.
[37] JIAN Zelang, ZHAO Liang, PAN Huilin, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochem Commun, 2012, 14: 86–89. 
[38] LI Shuo, DONG Yifan, XU Lin, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Adv Mater, 2014, 26: 3545–3553.
[39] FANG Yongjin, XIAO Lifen, QIAN Jiangfeng, et al. 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries[J]. Adv Mater, 2015, 27: 5895–5904.
[40] ARAGN Mara J, LAVELA Pedro, ORTIZ Gregorio F, et al. Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries[J]. Chem Electro Chem, 2015, 2: 995–1002.
[41] ARAGON M J, LAVELA P, ORTIZ G F, et al. Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries[J]. J Electrochem Soc, 2015, 162: A3077–A3083.
[42] LI Hui, YU Xiqian, BAI Ying, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. J Mater Chem A, 2015, 3: 9578–9586.
[43] LALERE F, SEZNEC V, MASQUELIER C, et al. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution[J]. J Mater Chem A, 2015, 3: 16198–16205.
[44] CHE Guangli, LAKSHMI Brinda B, FISHER Ellen R, et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393: 346–349.
[45] SHI S, LIU L, OUYANG, D S, et al, Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations, Phys Rev B, 2003 (68) 195108–195112.
[46] BARPANDA Prabeer, OYAMA Gosuke, YAMADA Atsuo, et al. A 3.8-V earth-abundant sodium battery electrode[J]. Nat Commun, 2014, 5: 4358(8).
[47] BARPANDA Prabeer, OYAMA Gosuke, YAMADA Atsuo, et al. Kröhnkite-type Na2Fe(SO4)2·2H2O as a Novel 3.25 V insertion compound for na-ion batteries[J]. Chem Mater, 2014, 26(3): 1297–1299.
[48] MENGA Yu, YUB Tiantian, ZHANG Sen, et al. Top-down synthesis of muscle-inspired alluaudite Na2+2xFe2−x(SO4)3/SWNT spindle as a high-rate and high-potential cathode for sodium-ion batteries[J]. J Mater Chem, 2016, 4(5):1624–1631.
[49] WEI Suhao, OYAMA Gyosuke, YAMADA Atsuo, et al. Synthesis and electrochemistry of Na2.5(Fe1−yMny)1.75(SO4)3 solid solutions for Na-ion batteries[J]. Chem electrochem, 2016, 3(2): 209–213. 
[50] SINGH Preetam, SHIVA Konda, CELIO Hugo, et al. Eldfellite, NaFe(SO4)2: An intercalation cathode host for low-cost Na-ion batteries[J]. Energ Environ Sci, 2015, 8(10): 3000–3005.
[51] WANG Long, LU Yuhao, LIU Jue, et al. A superior low-cost cathode for a Na-ion battery[J]. Angew Chem Int Ed, 2013, 52(7): 1964–1967.
[52] LEE Hyun-Wook, WANG Richard Y, PASTA Mauro, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nat commun, 2014, 5: 5280(6).
[53] WANG Long, SONG Jie, QIAO Ruimin, et al. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries[J]. J Am Chem Soc, 2015, 137: 2548–2554.
[54] LEE Eunsook, KIM D H, HWANG Jihoon, et al. Soft X-ray absorption spectroscopy study of Prussian blue analogue ACo[Fe(CN)6]H2O nano-particles (A=Na, K)[J]. J Korean Phys Soc, 2013, 62(12): 1910–1913.
[55] XIE Man, XU Menghao, HUANG Yongxin, et al. Na2NixCo1−xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochem Commun, 2015, 59: 91–94.
[56] WU Xianyong, WU Chenghao, WEI Congxiao, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS AMI, 2016, 8(8): 5393–5399.
[57] JANOSCHKA Tobias, HAGER Martin D, SCHUBERT Ulrich S. Powering up the future: radical polymers for battery applications[J]. Adv Mater, 2012, 24(48): 6397–6409.
[58] LIANG Yanliang, TAO Zhanliang, CHEN Jun. Organic electrode materials for rechargeable lithium batteries[J]. Adv Energy mater, 2012, 2(7): 742–769.
[59] GENORIO Bostjan, PIRNAT Klemen, CERC-KOROSEC Romana, et al. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries[J]. Angew Chem Int Ed, 2010, 49(40): 7222–7224.
[60] ZHAO Ruirui, ZHU Limin, CAO Yuliang, et al. An aniline- nitroaniline copolymer as a high capacity cathode for Na-ion batteries[J]. Electrochem Commun, 2012, (21): 36–38.
[61] GUO Chunyang, ZHANG Kai, ZHAO Qing, et al. High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J]. Chem Commun, 2015, 51(50): 10244–10247.
[62] LUO Wei, ALLEN Marshall, JI Xiulei, et al. An organic pigment as a high-performance cathode for sodium-ion batteries[J]. Adv Energy Mater, 2014, 4(15): 1400554(5).
[63] DENG Wenwen, YANG Hanxi, SHEN Yifei, et al. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries[J]. ACS AMI, 2015, 7(38): 21095–21099.
[64] AURBACH D, LEVI M D, LEVI E, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides[J]. J Electrochem Soc, 1998, 145: 3024–3034.
[65] YU Bo, XU Xuecheng. Conductive properties and mechanism of polyvinyl chloride doped by a multi-walled carbon nanotube- polypyrrole nano-complex dopant[J]. RSC Adv, 2014, 4: 3973–3983.
[66] JACHE Birte, ADELHELM Philipp. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angew Chem Int Ed, 2014, 53: 10169–10173.
[67] ZHU Zhiqiang, CHENG Fangyi, HU Zhe, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. J Power Sources, 2015, 293: 626–634.
[68] KIM Haegyeom, HONG Jihyun, YOON Gabin, et al. Sodium intercalation chemistry in graphite[J]. Energy Environ Sci, 2015, 8: 2963–2969.
[69] KIM Haegyeom, HONG Jihyun, PARK Young-Uk PARK, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv Funct Mater, 2015, 25: 534–541.
[70] LI Yunming, HU Yongsheng, QI Xingguo, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Mater, 2016, 5: 5191–5197.
[71] JIN Juan, YU Bao-jun, SHI,Zhi-qiang et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. J Power Sources, 2014, 272: 800–807.
[72] LI Yunming, XU Shuyin, HU Yongsheng, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. J Mater Chem A, 2015, 3: 71–77.
[73] ALCÁNTARA Ricardo, LAVELA Pedro, ORTIZ Gregorio F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochem Solid-State Lett, 2005, 8: A222–A225.
[74] CHEN Taiqiang, LIU Yong, PAN Likun, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. J Mater Chem A, 2014, 2: 4117–4121.
[75] LI Hongbian, SHEN Fei, LUO Wei, et al. Carbonized leaf membrane with anisotropic surfaces for sodium ion battery[J]. ACS Appl Mater Interface, 2016, 8(3): 2204–2210.
[76] WENZEL Sebastian, HARA Takeshi, JANEK Jurgen, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ Sci, 2011, 4: 3342–3345.
[77] LOTFABAD Elmira Memarzadeh, DING Jia, CUI Kai, et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8: 7115–7129.
[78] LUO Wei, SCHARDT Jenna, BOMMIER Clement, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. J Mater Chem A, 2013, 1(36): 10662–10666.
[79] DING Jia, WANG Huanlei, LI Zhi, et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors[J]. Energy Environ Sci, 2015, 8: 941–955.
[80] XIAO Lifen, CAO Yuliang, HENDERSONC Wesley A, et al. Hard carbon nanoparticles as high-capacity high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19: 279–288.
[81] DING Jia, WANG Huanlei, LI Zhi,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7: 11004–11015.
[82] LI Yunming, HU Yongsheng, LI Hong, et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. J Mater Chem A, 2016, 4: 96–104. 
[83] LI Yunming, MU Linqin, HU Yongsheng, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Mater, 2016, 2: 139–145.
[84] BERGER Claire, SONG Zhimin, LI Xuebin, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312: 1191–1195.
[85] LI Yunming, HU Yongsheng, CHEN Liquan, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Adv Energy Mater, 2016, 6: 1600659(9).
[86] KIM Donghan, LEE Eungje, SLATER Michael, et al. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application[J]. Electrochem Commun, 2012, 18: 66–69.
[87] IRISARRI E, PONROUCH A, PALACIN M R. Hard carbon negative electrode materials for sodium-ion batteries[J]. J. Electrochem Soc, 2015, 162: A2476–A2482.
[88] QIU Shen, XIAO Lifen, SUSHKO Maria L, et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-effciency sodium ion storage[J]. Adv Energy Mater, 2017, 7: 1700403(11).
[89] SENGUTTUVAN Premkumar, ROUSSE Gwenaelle, SEZNEC Vincent, et al. Cheminform Abstract: Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Cheminform, 2011, 42(49): 4019–4111.
[90] YAN Zichao, LIU Li, SHU Hongbo, et al. A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries[J]. J Power Sources, 2015, (274): 8–14. 
[91] PAN Huilin, LU Xia, HU Yongsheng, et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries[J]. Adv Energy mater, 2013, 3(9): 1186–1194.
[92] WANG Yuesheng, YU Xiqian, HU Yongsheng, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nat Commun, 2013, 4: 2365(7).
[93] WU Di, LI Xin, XU Bo, et al. NaTiO2: a layered anode material for sodium-ion batteries[J]. Energy Environ Sci, 2015, 8: 195–202.
[94] ZHAO Liang, PAN Huilin, HU Yongsheng, et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chin Phys B, 2012, 21(2): 32–35. 
[95] SUN Yang, ZHAO Liang, HU Yongsheng, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nat Commun, 2013, 4(5): 1870–1979. 
[96] MAAZAZ A, DELMAS C, HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. J Inclusion Phenom Macro Chem, 1983, 1(1): 45–51.
[97] WU Di, LI Xin, XU Bo, et al. NaTiO2: A layered anode material for sodium-ion batteries[J]. Energy Environ Sci, 2014, 8(1): 195–202.
[98] MU Linqin, BEN Liubin, HU Yongsheng, et al. Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium- ion batteries[J]. J Mater Chem A, 2016, 4: 7141–7147.
[99] SENGUTTUVAN P, ROUSSE G, PALACÍN M R, et al. Titanium(III) sulfate as new negative electrode for sodium-ion batteries[J]. Chem Mater, 2013, 25: 2391–2393.
[100] GNANAVEL Muthaiyan, RAVEAU Bernard, PRALONG Valerie. Electrochemical Li/Na intercalation in TiOSO4, first member of the phosphate tungsten bronze-type family[J]. J Electrochem Soc, 2015, 162 (3): A465–A469.
[101] DELMAS C, CHERKAOUI F, NADIRI A, et al. A nasicon-type phase as intercalation electrode: NaTi2(PO4)3[J]. Mater Res Bull, 1987, 22(5): 631–639.
[102] WU Wei, MOHAMED Alex, WHITACRE J F. Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode[J]. J Electrochem Soc, 2013, 160(3): A497–A504.
[103] PANG Gang, YUAN Changzhou, NIE Ping, et al. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries[J]. Nanoscale, 2014, 6(12): 6328–6334.
[104] PATOUX Sebastien, ROUSSE Gwenaelle, LERICHE Jean-Bernard, et al. Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3, (M: Fe, Cr) phosphates[J]. Cheminform, 2003, 34(34): 2084–2093. 
[105] ABOUIMRANE Ali, WENG Wei, ELTAYEB Hussameldin, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells[J]. Energy Environ Science, 2012, 5(11): 9632–9638. 
[106] KIM Haegyeom, KWON Ji Eon, LEE Byungju, et al. High energy organic cathode for sodium rechargeable batteries[J]. Chem Mater, 2015, 27(21): 7258–7264.
[107] ARMAND M, GRUGEON S, VEZIN H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nat Mater, 2009, 8(2): 120–128.
[108] ZHAO Liang, ZHAO Junmei, HU YongSheng, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery[J]. Adv Energy Mater, 2012, 2(8): 962–965.
[109] CHIHARA Kuniko, KITAJOU Ayuko, GOCHEVA I D, et al. Cathode properties of Na2C6O6, for sodium-ion batteries[J]. Electrochim Acta, 2013, 110(6): 240–246.
[110] WU Xiaoyan,MA Jie,HU Yongsheng, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. J Mater Chem A, 2015, 3(25): 13193–13197.
[111] WU Xiaoyan, JIN Shifeng, ZHANG Zhizheng, et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Sci Adv, 2015, 1(8): 1500330(9).
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com