[1] SYDNEY R, ESFANDI E, SURAPANENI S. Control concrete sewer corrosion via the crown spray process[J]. Water Environ Res, 1996, 68(3): 338–347.
[2] THAER M W. Sulfur mortar and polymer modified sulfur mortar lining for concrete sewer pipe[D]. Iowa: Iowa State University. 2001.
[3] 何薇. 混凝土碳化及其对地下结构力学性能的影响研究[D]. 西南交通大学, 2013.
HE Wei. Research on concrete carbonization and its influence on the mechanical behaviour of underground structures (in Chinese, dissertation). Chengdu: Southwest Jiaotong University, 2013.
[4] 柳俊哲. 混凝土碳化研究与进展(1):碳化机理及碳化程度评价[J]. 混凝土, 2005(11): 10–13.
LIU Junzhe. Concrete (in Chinese), 2005(11): 10–13.
[5] 2015年温室气体公报[R]. 日内瓦: 世界气象组织, 2016.
2015 Greenhouse gas bulletin[R]. Geneva: World Meteorological Organization, 2016.
[6] 王文龙, 陈向阳. 提高混凝土抗碳化性能的若干技术问题研究[J]. 中国农村水利水电, 2013(6): 134–136+138.
WANG Wenlong, CHEN Xiangyang. Chin Rural Water Hydropower (in Chinese), 2013(6): 134–136 + 138.
[7] 赵冰华, 费正岳, 赵宇, 等. 碳化对混凝土性能的影响[J]. 硅酸盐通报, 2012, 31(6): 1641–1644.
ZHAO Binghua, FEI Zhengyue, ZHAO Yu, et al. Bull Chin Ceram Soc (in Chinese), 2012, 31(6): 1641–1644.
[8] 张立伟. 碳化与锈蚀对地下结构服役性能的研究[D]. 同济大学, 2008.
ZHANG Liwei. Carbonization and rust on the service performance of underground structures (in Chinese, dissertation). Shanghai: Tongji University, 2008.
[9] DIERCKS M, SAND W. Microbial corrosion of concrete[J]. Experientia, 1991, 47(4): 514–516.
[10] CHO K, MORI T. A newly isolated fungus participates in the corrosion of concrete sewer pipes[J]. Water Sci Technol, 1995, 31(7): 263–271.
[11] GU J D, FORD T E, BERKE N S, et al. Biodeterioration of concrete by fungus Fusarium[J]. Int Biodeter Biodegr, 1998, 41(2): 101–109.
[12] 张小伟, 张雄. 混凝土微生物腐蚀的作用机制和研究方法[J]. 建筑材料学报, 2006, 9(1): 52–58.
ZHANG Xiaowei, ZHANG Xiong. J Build Mater (in Chinese), 2006, 9(1): 52–58.
[13] O’CONNELL M, MCNALLY C, RICHARDSON M G. Biochemical attack on concrete in wastewater applications: A state of the art review[J]. Cem Concr Compos, 2010, 32(7): 479–485.
[14] DAVIS J L, NICA D. Quantifying microbially induced deterioration of concrete: initial studies[J]. Int Biodeter Biodegr, 2002, 49(4): 233–237.
[15] 殷文, 魏王俊, 王旭艳, 等. 混凝土碳化收缩及其机理分析[J]. 研究探索, 2014, 32(8): 31–35.
YIN Wen, WEI Wangjun, WANG Xuyan, et al. Res Explore (in Chinese), 2014, 32(8): 31–35.
[16] 曹明莉, 丁言兵, 郑进炫, 等. 混凝土碳化机理及预测模型研究进展[J]. 混凝土, 2012(9): 35–38+46.
CAO Mingli, DING Yanbing, ZHENG Jinxuan, et al. Concrete (in Chinese), 2012(9): 35–38+46.
[17] JIANG F, LEUNG D H, LI S, et al. A biofilm model for prediction of pollutant transformation in sewers[J]. Water Res, 2009, 43(13): 3187–3198.
[18] 王文军, 王文华, 黄亚冰, 等. 生物膜的研究进展[J]. 环境科学进展, 1999, 7(5): 43–51.
WANG Wenjun, WANG Wenhua, HUANG Yabing, et al. Adv Environ Sci (in Chinese), 1999, 7(5): 43–51.
[19] 陆建鑫, 水中和, 田素芳, 等. 超硫酸盐水泥与波特兰水泥混凝土显微结构与性能的比较研究[J]. 武汉理工大学学报, 2013, 35(5): 1–7.
LU Jianxin, SHUI Zhonghe, TIAN Sufang, et al. J Wuhan Univ Technol (in Chinese), 2013, 35(5): 1–7.
[20] DEBOUCHA W, LEKLOU N, KHELIDJ A, et al. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration[J]. Constr Build Mater, 2017, 146(1): 687–701
|