首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非化学计量掺杂对(SmLi)0.04(BiNa)0.46TiO3 陶瓷电性能的影响
作者:孙红梅1 刘笑2 李波3 刘心宇3 
单位:1. 绥化学院食品与制药工程学院 黑龙江 绥化 152061 2. 中南大学粉末冶金研究院 长沙 410000  3. 桂林电器科学研究院 
关键词:非化学计量 储能陶瓷 弛豫铁电 钛酸铋钠 
分类号:TQ174.75
出版年,卷(期):页码:2018,46(9):0-0
DOI:10.14062/j.issn.0454-5648.2018.09.05
摘要:

 采用非化学计量的配比制备了(SmLi)0.04(BiNa)0.46TiO3–x%MnCO3(x=0~1.5)无铅铁电陶瓷。结果表明:所有样品的主

晶相均为立方钙钛矿结构。材料制备过程中的A 位离子烧损可以通过锰的掺杂得到补偿,补偿后的样品能够承受176 kV/cm
直流电场。非化学计量比的Mn 使铁–顺电介电峰向高温方向移动,同时打破铁电相的长程有序,呈现弛豫反铁电特征。当
x=1.0 时,B 位键价最大,电滞回线收缩且放电储能密度为0.916 J/cm3。晶粒和晶界两个电学微区主导了整个晶体的电学导
电,而且氧空位电离产生的电子为主要的电荷载体。
基金项目:
作者简介:
参考文献:

 [1] 郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电

工程, 2008, 25(4): 1–4.
ZHENG J Y, HE W. J Mech Electr Eng(in Chinese), 2008, 25(4): 1–4.
[2] 洪 璐 , 沈宗洋, 李月明, 等. (0.94–x)Bi0.5Na0.5TiO3–x(K0.5Na0.1)
NbO3–0.06BaTiO3无铅陶瓷的结构与电储能特性研究[J].中国陶瓷,
2016, 52(8): 8–12.
HONG L, SHEN Z Y, LI Y M, et al. China Ceram(in Chinese), 2016,
52(8): 8–12.
[3] 余祖灯, 江向平, 杨庆, 等. (K0.52Na0.44Li0.04) (Nb0.86Ta0.10Sb0.04)
O3–BiFeO3无铅压电陶瓷的电性能[J]. 硅酸盐学报, 2011, 39(5):
812–817.
YU Z D, JIANG X P, YANG Q, et al. J Chin Ceram Soc, 2011,
39(5): 812–817.
[4] DIXIT A, KATIYAR R S, AGRAWAL D C. Enhanced tunability and
relaxor characteristics in calcium substituted barium zirconium titanate
thin films[J]. Integr Ferroelectr, 2007, 91(1): 48–61.
[5] KWON D K, LEE M H. Temperature-stable high-energy-density
capacitors using complex perovskite thin films[J]. Ieee T Ultraso Ferr,
2012, 59(9): 1894–1899.
[6] XU J W, LI Q L, ZHOU C R, et al. High piezoelectric response in
(Li0.5Sm0.5)2+- modified 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 near the
nonergodic–ergodic relaxor transition[J]. J Electron Mater, 2016, 45(6):
2967–2973.
[7] KLIMKOWSKI G, SUCHANICZ J, KARPIERZ M, et al. Uniaxial
pressure effect on dielectric properties of 0.7Na0.5Bi0.5TiO3–0.3SrTiO3
ceramics[J]. Ferroelectrics, 2014, 464(1): 94–100.
[8] DU P, LUO L, LI W, et al. Photoluminescence and electrical
performance of smart material: pr-doped (1–x)(Na0.5Bi0.5)TiO3–
xCaTiO3 ceramics[J]. J Alloy Compd, 2013, 551(5):219–223.
[9] MAQBOOL A, HUSSAIN A, RAHMAN J U, et al. Enhanced electric
field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–
BaTiO3–SrZrO3 lead-free ceramics[J]. Ceram Int, 2014, 40(8):
11905–11914.
[10] MAQBOOL A, HUSSAIN A, RAHMAN J U, et al. Effect of SrZrO3
substitution on structural and electrical properties of lead-free
Bi0.5Na0.5TiO3–BaTiO3 ceramics[J]. Phys Status Solidi, 2015, 211(8):
1709–1714.
[11] LI Q, WANG J, MA Y, et al. Enhanced energy-storage performance
and dielectric characterization of 0.94Bi0.5Na0.5TiO3– 0.06BaTiO3
modified by CaZrO3[J]. J Alloy Compd, 2016, 663: 701–707.
[12] BERIK P, MAURYA D, KUMAR P, et al. Enhanced torsional
actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)–
0.07BaTiO3 lead-free piezoceramic system[J]. Sci Technol Adv Mater,
2017, 18(1):51–59.
[13] 秦善, 王汝成. 钙钛矿(ABX3)型结构畸变的几何描述及其应用[J].
地质学报, 2004, 78(3): 345–350.
QIN S, WANG R C. Acta Geol Sin(in Chinese), 2004, 78(3): 345–350.
[14] CHIANG H Y, LEE Y C, GAIK T L. Effect of microwave sintering on
the microstructure and piezoelectric properties of ZnO-doped
Bi0.5Na0.5TiO3 ceramics[J]. J Ceram Soc Jan, 2013, 121(1413): 430–436.
[15] LIU X, YUAN C L, LIU X Y, et al. Microstructures and microwave
dielectric properties of xLi1/2Ln1/2TiO3–(1–x)Na1/2Bi1/2TiO3 (Ln = Sm
and Nd) ceramic systems[J]. J Alloy Compd, 2017, 698: 329–335.
[16] YANG C H, HU G D, Wu W B, et al. Reduced leakage current,
enhanced ferroelectric and dielectric properties in (Ce, Fe)-codoped
Na0.5Bi0.5TiO3 film[J]. Appl Phys Lett, 2012, 100(2):022909.
[17] LI M, PIETROWSKI M J, DESOUZA R A , et al. A family of oxide
ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3[J].
Nat Mater, 2014, 13(1): 31–35.
[18] LI M, ZHANG H, COOK S N, et al. Dramatic influence of A-site
nonstoichiometry on the electrical conductivity and conduction
mechanisms in the perovskite oxide Na0.5Bi0.5TiO3[J]. Chem Mater,
2015, 27(2): 629–634.
[19] LI M, LI L H, ZANG J D, et al. Donor-doping and reduced leakage
current in Nb-doped Na0.5Bi0.5TiO3[J]. Appl Phys Lett, 2015, 106(10):
633–637.
[20] GAO D, KWOK K W, LIN D. Microstructure, piezoelectric and
ferroelectric properties of Mn-added Na0.5Bi4.5Ti4O15 ceramics[J]. Curr
Appl Phys, 2011, 11(3):124–127.
[21] LIN D, KWOK K W, TIAN H, et al. Phase transitions and electrical
properties of (Na1–xKx)(Nb1–ySby)O3 lead-free piezoelectric ceramics
with a MnO2 sintering aid[J]. J Am Ceram Soc, 2007,
90(5):1458–1462.
[22] SPREITZER M, VALANT M, SUVOROV D. Sodium deficiency in
Na0.5Bi0.5TiO3[J]. J Mater Chem, 2007, 17(17):185–192.
[23] 熊钢. 低温烧成Ca(Li1/3Nb2/3)O3–δ基微波陶瓷材料的研究[D]. 武汉:
华中科技大学, 2007.
XIONG G. Study of the Ca(Li1/3Nb2/3)O3–δ– based ceramics sintered at
low temperature(in Chinese, dissertation). Wuhan: Huazhong
University of Science and Technology, 2007.
[24] RESE N E and OKEEFEE M. Bond–valence parameters for solids[J].
Acta Crystallogr, 1991, 47(2): 192–197.
[25] WANG H, XU H, LUO H, et al. Dielectric anomalies of the
relaxor-based 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 single crystals[J]. Appl
Phys Lett, 2005, 87(1): 012904.
[26] JO W, DITTMER R, ACOSTA M, et al. ChemInform abstract: giant
electric-field-induced strains in lead-free ceramics for actuator
applications–status and perspective[J]. J Electroceram, 2012, 29(1):
71–93.
[27] XIA Y, LIU Z, WANG Y, et al. Conduction behavior change
responsible for the resistive switching as investigated by complex
impedance spectroscopy[J]. Appl Phys Lett, 2007, 91(10):222105.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com