首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
低成本制备MCM-41介孔分子筛及其对镉离子的吸附性能
作者:李青翠 韦美彩 黄以军 
单位:(河池学院化学与生物工程学院 广西 宜州 5463002) 
关键词:MCM-41介孔分子筛 微硅粉 水热反应 镉离子 吸附 
分类号:X758
出版年,卷(期):页码:2019,47(1):0-0
DOI:10.14062/j.issn.0454-5648.2019.01.17
摘要:

 以廉价的硅铁行业的废弃物微硅粉为硅源,十六烷基三甲基溴化铵(CTAB)为模板剂,采用碱法提纯-水热法合成制备了纯硅的MCM-41介孔分子筛。用红外光谱(FTIR)、小角X射线衍射、液氮吸附脱附、场发射扫描电子显微镜和高分辨透射电子显微镜对分子筛进行了结构表征和表面积及孔径分析。结果表明:所制备的分子筛的比表面积是918 m2/g,孔容1.11 cm3/g和孔径2.9 nm。采用静态吸附方法,研究了所合成的分子筛对水溶液中Cd2+ 离子的吸附行为,分析了pH值、分子筛质量、吸附时间和Cd2+的初始浓度对吸附的影响,并探讨了该吸附剂对Cd2+的吸附热力学和动力学特性。结果表明:当溶液的pH值为2.0~7.0,吸附剂的量在30~130 mg范围内时,吸附率随着pH值和吸附剂用量的增加而增加,当吸附剂用量为130 mg时,有序介孔分子筛对Cd2+离子的去除率基本稳定。有序介孔分子筛对Cd2+离子的吸附量随吸附时间的增加而增加,在120 min时达到吸附平衡。有序介孔分子筛对Cd2+的等温吸附过程更符合Freundlich模型,吸附动力学较符合准二级吸附方程。

 This study reports a facile synthetic method to produce MCM-41 mesoporous materials using silica fume and cetyltrimethylammonium bromide (CTAB) as a silicon source and structure-directing agent, respectively. The materials were characterized by different techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption-desorption. It was confirmed that the as-synthesized material exhibited a well-ordered mesostructure with a high surface area of approx. 918 m2/g, large pore volume of 1.11 cm3/g, and average pore diameter of 2.9 nm. The adsorption property of MCM-41 was evaluated by the removal of Cd2+ ion from water. The effects of pH, the amount of molecular sieves, the contact time, and initial Cd2+ concentration were investigated. The results show that when the pH of the solution is 2.0−7.0 and the amount of adsorbent is in the range of 30−130 mg, the adsorption rate increases with the increase of pH value and amount of adsorbent. When the amount of adsorbent is 130 mg, the removal rate of Cd2+ ions by ordered mesoporous molecular sieves is basically stable. The adsorption amount of Cd2+ Ions by ordered mesoporous molecular sieves increased with the increase of adsorption time, and reached the adsorption equilibrium at 120 min. The adsorption of Cd2+ by MCM-41 corresponded with the pseudo-second-order kinetic equation, and the isothermal adsorption of Cd2+ followed the Freundlich model.

基金项目:
广西高校中青年教师提升项目(KY2016YB387);河池学院博士启动项目(XJ2015KQ012)资助
作者简介:
参考文献:

 [1] RODRIGUES M L, FORMOSO M L. Exposure to selected heavy metals through water ingestion in an area under the influence of tanneries[J]. Environ Geochem Hlth, 2005, 27(5/6): 397?408.

[2] KHRAISHCH M A M, ALDEGS Y S, MCMINN W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite[J]. Chem Eng J, 2004, 99(2): 177?184.
[3] KURNIAWANA T A, CHANA G Y S, LOA W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals[J]. Sci Total Environ, 2006, 366(2): 409?426. 
[4] YAVUZ Ö, ALTUNKAYNAK Y, GÜZEL F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite[J]. Water Res, 2003, 37(4): 948?952.
[5] BENHAMOU A, BAUDU M, DERRICHE Z, et al. Aqueous heavy metals removal on amine-functionalised Si-MCM-41 and Si-MCM-48[J]. J Hazard Mater, 2009, 171(1):1001?1008.
[6] LAM K F, CHEN X, MCKAY G, et al. Anion effect on Cu2+ adsorption on NH2-MCM-41[J]. Ind Eng Chem Res, 2008, 47(23): 9376?9383.
[7] SHOWKAT A M, ZHANG Y P, KIM M S, et al. Analysis of heavy metal toxic ions onto amino-functionalized ordered mesoporous silica[J]. Bull Korean Chem Soc, 2007, 28(11): 1985?1992.
[8] GHIACI M, ABBASPUR A, KIA R, et al. Vapor-phase alkylation of toluene by benzyl alcohol on H3PO4-modified MCM-41 mesoporous silicas[J]. Catal Commun, 2007, 8(1): 49?56.
[9] HUI K S AND CHAO C Y H. Synthesis of MCM-41 from coal fly ash by a green approach: influence of synthesis pH[J]. J Hazard Mater, 2006, 137(2): 1135?1148.
[10] ONIDA B, BONELLI B, FLORA L, et al. Permeability of micelles in surfactant-containing MCM-41 silica as monitored by embedded dye molecules[J]. Chem Commun, 2001, 9(21): 2216?2217.
[11] ARMATAS G S, KANATZIDIS M G. Hexagonal mesoporous germanium[J]. Science, 2006, 313(578): 817?820.
[12] XIONG L, SHI J, ZHANG L, et al. Facile one-step synthesis of highly ordered bimodal mesoporous phosphosilicate monoliths[J]. J Am Chem Soc, 2007, 129(39): 11878?11879.
[13] SHAO Yimin, WANG Xi, YUAN Kang, et al. Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution[J]. J Colloid Interface, 2014, 429(9): 25?33.  
[14] KULA I, UGURLU M, KARAOGLU H, et al. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation[J]. Bioresour Technol, 2008, 99(3): 492?501.
[15] RAJI F, PAKIZEH M. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent[J]. Appl Surf Sci, 2013, 282(5): 415?424.
[16] BERA A, KUMAR T, OJHA K, et al. Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies[J]. Appl Surf Sci, 2013, 284(11): 87?99.
[17] YAO Yunjin, HE Bing, XU Feifei, et al. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes[J]. Chem Eng J, 2011, 170(1): 82?89.
[18] FOO K Y, HAMEED B H. Insights into the modeling of adsorption isotherm systems[J]. Chem Eng J, 2010, 156(1): 2?10.
[19] LI Qingzhu, CHAI Liyuan, QIN Wenqing. Cadmium(II) adsorption on esterified spent grain: Equilibrium modeling and possible mechanisms[J]. Chem Eng J, 2012, 197(29): 173?180 
[20] AZOUAOUA N, SADAOUIA Z, DJAAFRI A, et al. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics[J]. J Hazard Mater, 2010, 184(1/3): 126?134.
[21] PAPANDREOU A, STOURNARAS C J, PANIAS D. Copper and cadmium adsorption on pellets made from fired coal fly ash[J]. J Hazard Mater, 2007, 148(3): 538?547.
[22] SEMERJIAN L. Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust[J]. J Hazard Mater, 2010, 173(1/3): 236?242.
[23] LUO Chao, WEI Rongyan, GUO Dan, et al. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions[J]. Chem Eng J, 2013, 225(1): 406?415.
[24] ATAR N, OLGUN A, WANG Shaobin. Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: Batch and fixed-bed system studies[J]. Chem Eng J, 2012, 192(2): 1?7.
[25] ZENG Guangming, LIU Yuanyuan, TANG Lin, et al. Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon[J]. Chem Eng J, 2015, 259(259): 153?160.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com