[1] FENG Z, HAO Y, BI M, et al. Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency[J]. IET Nanodielectr, 2018, 1(1): 60–66.
[2] HUAN Y, LI Y, YIN B, et al. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A= Ca, Sr, Ba)[J]. Power Sources, 2017, 359: 384–390.
[3] HUAN Y, FAN Y, LI Y, et al. Systematic effect of contaminations on IT-SOFCs cathode stability: A quantifiable correlation versus cathode-side poisoning and protection[J]. J Mater Chem A, 2018, 6(12): 5172–5184.
[4] WEI T, ZHANG L A, CHEN Y, et al. Promising proton conductor for intermediate-temperature fuel cells: Li13.9Sr0.1Zn(GeO4)4[J]. Chem Mater, 2017, 29(4): 1490–1495.
[5] 常月琪, 董杉木, 周新红, 等. 纳米结构过渡金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016, 44 (8): 1248–1258.
CHANG Yueqi, DONG Shanmu, ZHOU Xinhong, et al. J Chin Ceram Soc, 2016, 44 (8): 1248–1258.
[6] CUI B, SONG C, WANG G Y, et al. Reversible ferromagnetic phase transition in electrode-gated manganites[J]. Adv Funct Mater, 2014, 24(46): 7233–7240.
[7] CUI B, WERNER P, MA T, et al. Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures[J]. Nat Commun, 2018, 9(1): 3055.
[8] CUI B, SONG C, MAO H J, et al. Magnetoelectric coupling induced by interfacial orbital reconstruction[J]. Adv Mater, 2015, 27(42): 6651–6656.
[9] ZHAO L, LIU Q, GAO J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Adv Mater, 2017, 29 (31): 1701824.
[10] 代广周, 路标, 李丹丹, 等. 钛酸锶钡(Ba0. 7Sr0. 3TiO3)厚膜陶瓷的大电卡效应和储能密度[J]. 硅酸盐学报, 2018, 46 (6): 807–812.
DAI Guangzhou, LU Biao, LI Dandan, et al. J Chin Ceram Soc, 2018, 46 (6): 807–812.
[11] HAO Y, WANG X H, BI K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films[J]. Nano Energy, 2017, 31: 49–56.
[12] WU L W, WANG X H, GONG H L, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency[J]. J Mater Chem C, 2015, 3 (4): 750–758.
[13] HUAN Y, WANG X H, FANG J, et al. Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering[J]. J Am Ceram Soc, 2013, 96(11): 3369–3371.
[14] MISHRA A, MAJUMDAR B, RANJAN R. A complex lead-free (Na, Bi,Ba) (Ti,Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications[J]. J Eur Ceram Soc, 2017, 37 (6): 2379–2384.
[15] SHEN Z B, WANG X H, LUO B C, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications[J]. J Mater Chem A, 2015, 3 (35): 18146–18153.
[16] HUAN Y, WANG X, KORUZA J, et al. Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K, Na)NbO3-based ceramics[J]. Sci Rep, 2016, 6: 22053.
[17] HUAN Y, WANG X, LI L, et al. Strong domain configuration dependence of the nonlinear dielectric response in (K, Na)NbO3-based ceramics[J]. Appl Phys Lett, 2015, 107(20): 202903.
[18] HUAN Y, WANG X, WEI T, et al. Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere[J]. J Am Ceram Soc, 2017, 100 (5): 2024–2033.
[19] HUAN Y, ZHANG X S, SONG J N, et al. High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure[J]. Nano Energy, 2018, 50: 62–69.
[20] HUAN Y, WANG X H, GUO L M, et al. Low temperature sintering and enhanced piezoelectricity of lead-free (Na0.52K0.4425Li0.0375). (Nb0.86Ta0.06Sb0.08)O3 ceramics prepared from nano-powders[J]. J Am Ceram Soc, 2013, 96(11): 3470–3475.
|