首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
K0.5Na0.5NbO3–xBiMg0.5Ti0.5O3电介质陶瓷的结构与储能性能
作者:贺薪瑜 管泽浩 王晓智 王振行   
单位:(济南大学材料科学与工程学院 济南250022) 
关键词:铌酸钾钠基陶瓷 无铅压电陶瓷 储能性质 
分类号:TQ174.75
出版年,卷(期):页码:2019,47(2):0-0
DOI:10.14062/j.issn.0454-5648.2019.02.20
摘要:

 利用固相法制备了K0.5Na0.5NbO3 (KNN)–xBiMg0.5Ti0.5O3电介质陶瓷,研究了BiMg0.5Ti0.5O3对KNN基陶瓷储能性质的影响。结果表明,当x<0.1时,BiMg0.5Ti0.5O3可完全固溶进入晶格,并且随着掺杂量的增加,晶体结构逐步由正交相变成厭立方相,晶粒尺寸降低,致密度提高,因此陶瓷的储能密度和储能效率逐步增加,在x=0.1时,获得最佳储能性能:击穿场强约195 kV/cm,储能密度约1.25 J/cm3,储能效率约85.3%。

 A lead-free electrical ceramic K0.5Na0.5NbO3(KNN)–xBiMg0.5Ti0.5O3 was prepared by a conventional solid-state method. The influence of BiMg0.5Ti0.5O3 on the energy-storage performance of KNN-based ceramics was investigated. The results show that BiMg0.5Ti0.5O3 can be diffused completely into the K0.5Na0.5NbO3 lattice when x < 0.1. The crystal structure changes from orthorhombic phase to pseudo-cubic phase when BiMg0.5Ti0.5O3 content increases. In addition, the grain size decreases and the density increases with increasing BiMg0.5Ti0.5O3 content, resulting in an enhanced energy-storage energy and an efficiency. The optimum energy density of 1.25 J/cm3 and energy storage efficiency of 85.3% are obtained as x = 0.1 under the breakdown strength of 195 kV/cm.

基金项目:
国家自然科学基金青年项目(51702119);中国博士后科学基金面上项目(2017M612177);济南大学博士后科研启动基金(XBH1701)。
作者简介:
参考文献:

 [1] FENG Z, HAO Y, BI M, et al. Highly dispersive Ba0.6Sr0.4TiO3 nanoparticles modified P(VDF-HFP)/PMMA composite films with improved energy storage density and efficiency[J]. IET Nanodielectr, 2018, 1(1): 60–66. 

[2] HUAN Y, LI Y, YIN B, et al. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A= Ca, Sr, Ba)[J]. Power Sources, 2017, 359: 384–390. 
[3] HUAN Y, FAN Y, LI Y, et al. Systematic effect of contaminations on IT-SOFCs cathode stability: A quantifiable correlation versus cathode-side poisoning and protection[J]. J Mater Chem A, 2018, 6(12): 5172–5184. 
[4] WEI T, ZHANG L A, CHEN Y, et al. Promising proton conductor for intermediate-temperature fuel cells: Li13.9Sr0.1Zn(GeO4)4[J]. Chem Mater, 2017, 29(4): 1490–1495. 
[5] 常月琪, 董杉木, 周新红, 等. 纳米结构过渡金属氮化物用于电化学储能器件[J]. 硅酸盐学报, 2016, 44 (8): 1248–1258. 
CHANG Yueqi, DONG Shanmu, ZHOU Xinhong, et al. J Chin Ceram Soc, 2016, 44 (8): 1248–1258. 
[6] CUI B, SONG C, WANG G Y, et al. Reversible ferromagnetic phase transition in electrode-gated manganites[J]. Adv Funct Mater, 2014, 24(46): 7233–7240. 
[7] CUI B, WERNER P, MA T, et al. Direct imaging of structural changes induced by ionic liquid gating leading to engineered three-dimensional meso-structures[J]. Nat Commun, 2018, 9(1): 3055. 
[8] CUI B, SONG C, MAO H J, et al. Magnetoelectric coupling induced by interfacial orbital reconstruction[J]. Adv Mater, 2015, 27(42): 6651–6656. 
[9] ZHAO L, LIU Q, GAO J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance[J]. Adv Mater, 2017, 29 (31): 1701824. 
[10] 代广周, 路标, 李丹丹, 等. 钛酸锶钡(Ba0. 7Sr0. 3TiO3)厚膜陶瓷的大电卡效应和储能密度[J]. 硅酸盐学报, 2018, 46 (6): 807–812. 
DAI Guangzhou, LU Biao, LI Dandan, et al. J Chin Ceram Soc, 2018, 46 (6): 807–812. 
[11] HAO Y, WANG X H, BI K, et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films[J]. Nano Energy, 2017, 31: 49–56. 
[12] WU L W, WANG X H, GONG H L, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency[J]. J Mater Chem C, 2015, 3 (4): 750–758. 
[13] HUAN Y, WANG X H, FANG J, et al. Grain size effects on piezoelectric properties and domain structure of BaTiO3 ceramics prepared by two-step sintering[J]. J Am Ceram Soc, 2013, 96(11): 3369–3371. 
[14] MISHRA A, MAJUMDAR B, RANJAN R. A complex lead-free (Na, Bi,Ba) (Ti,Fe)O3 single phase perovskite ceramic with a high energy-density and high discharge-efficiency for solid state capacitor applications[J]. J Eur Ceram Soc, 2017, 37 (6): 2379–2384. 
[15] SHEN Z B, WANG X H, LUO B C, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications[J]. J Mater Chem A, 2015, 3 (35): 18146–18153. 
[16] HUAN Y, WANG X, KORUZA J, et al. Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K, Na)NbO3-based ceramics[J]. Sci Rep, 2016, 6: 22053. 
[17] HUAN Y, WANG X, LI L, et al. Strong domain configuration dependence of the nonlinear dielectric response in (K, Na)NbO3-based ceramics[J]. Appl Phys Lett, 2015, 107(20): 202903. 
[18] HUAN Y, WANG X, WEI T, et al. Defect engineering of high-performance potassium sodium niobate piezoelectric ceramics sintered in reducing atmosphere[J]. J Am Ceram Soc, 2017, 100 (5): 2024–2033. 
[19] HUAN Y, ZHANG X S, SONG J N, et al. High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure[J]. Nano Energy, 2018, 50: 62–69. 
[20] HUAN Y, WANG X H, GUO L M, et al. Low temperature sintering and enhanced piezoelectricity of lead-free (Na0.52K0.4425Li0.0375). (Nb0.86Ta0.06Sb0.08)O3 ceramics prepared from nano-powders[J]. J Am Ceram Soc, 2013, 96(11): 3470–3475.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com