[1] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.
[2] CHOI N S, CHEN Z, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angew Chem Int Ed, 2012, 51(40): 9994–10024.
[3] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Mater, 2018, 10: 246–267.
[4] 陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6): 785–792.
CHEN Kai, CHENG Liqian. J Chin Ceram Soc, 2017, 45(6): 785–792.
[5] 李杨, 连芳, 周国治. 应用于锂离子电池的无机晶态固体电解质导电性能研究进展[J]. 硅酸盐学报, 2013, 41(7): 950–958.
LI Yang, LIAN Fang, ZHOU Guozhi. J Chin Ceram Soc, 2013, 41(7): 950–958.
[6] PARK K H, BAI Q, KIM D H, et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries[J]. Adv Energy Mater, 2018, 8(18): 1800035.
[7] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2: 16103.
[8] MEYER W H. Polymer electrolytes for lithium-ion batteries[J]. Adv Mater, 1998, 10(6): 439–448.
[9] STEPHAN A M, NAHM K S. Review on composite polymer electrolytes for lihtium batteries[J]. 2006, 47: 5952–5964.
[10] LI Y, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. J Am Chem Soc, 2018, 140(20): 6448–6455.
[11] HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2: 1–12.
[12] LIU T, REN Y, SHEN Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. J Power Sources, 2016, 324: 349–357.
[13] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10: 682–686.
[14] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 1–7.
[15] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lihtium batteries with ultralong cycle life[J]. Nano Lett, 2016, 16: 7148–7154.
[16] ZHANG J, ZANG X, WEN H, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. J Mater Chem A, 2017, 5:4940–4948.
[17] CHEN L, LI Y, LI S, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176–184.
[18] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447–454.
[19] WHITELEY J M, TAYNTON P, ZHANG W, et al. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix[J]. Adv Mater, 2015, 27: 6922–6927.
[20] ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. J Am Chem Soc, 2017, 139(39): 13779–13785.
[21] YU J, KWOK S C T, LU Z. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature[J]. Chem Electro Chem, 2018, 5(19): 2873–2881.
[22] YAO P, ZHU B, ZHAI H, et al. PVDF/palygorskite nanowire composite electrolyte for 4V rechargeable lithium batteries with high energy density[J]. Nano Lett, 2018, 18(10): 6113–6120.
|