[1] MACHADO R, OCHOA D A, DOS SANTOS V B, et al. High stability of properties in morphotropic phase boundary Bi0.5Na0.5TiO3–BaTiO3 piezoceramics[J]. Mater Lett, 2016, 183: 73–76.
[2] YANG Z, LIU B, WEI L, et al. Structure and electrical properties of (1−x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary[J]. Mater Res Bull, 2008, 43(1): 81–89.
[3] 陈志武. BNT–BT和BNT–BKT基无铅压电陶瓷研究进展[J]. 材料导报, 2006, 20(01): 24–28.
CHEN Zhiwu. Mater Rep (in Chinese), 2006, 20(01): 24–28.
[4] BAI W, LI P, LI L, et al. Structure evolution and large strain response in BNT–BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3[J]. J Alloys Compd, 2015, 649: 772–781.
[5] CHANDRASEKHAR M, KUMAR P. Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications[J]. Ceram Int, 2015, 41(4): 5574–5580.
[6] CHENG R, XU Z, CHU R, et al. Large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics[J]. Ceram Int, 2015, 41(6): 8119–8127.
[7] GUERRA J D S, PELáIZ–BARRANCO A, CALDERóN–PIñAR F, et al. Room temperature antiferroelectric-phase stability in BNT–BT lead-free ceramics[J]. Phys Rev B: Condens Matter, 2017, 525: 114–118.
[8] HAJRA S, SAHOO S, DAS R, et al. Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3–BaTiO3 electronic system[J]. J Alloys Compd, 2018, 750: 507–514.
[9] ZHAO Y, XU J, YANG L, et al. High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complex–ion[J]. J Alloys Compd, 2016, 666: 209–216.
[10] JIN C C, WANG F F, WEI L L, et al. Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3- based lead-free solid solutions[J]. J Alloys Compd, 2014, 585: 185–191.
[11] FAN P, ZHANG Y, XIE B, et al. Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics[J]. Ceram Int, 2018, 44(3): 3211–3217.
[12] 段少锋. B位离子掺杂BNT基无铅压电陶瓷的制备与性能研究[D]; 天津大学, 2017.
DUAN Shaofeng. T J U (in Chinese), 2017.
[13] XIE H, ZHAO Y, XU J, et al. Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead–free ceramics[J]. J Alloys Compd, 2018, 743: 73–82.
[14] JAIBAN P, WATCHARAPASORN A. Effects of Mg doping on electrical properties of Ba0.7Ca0.3TiO3 ceramics[J]. Mate Today Commun, 2017, 11: 184–190.
[15] CHANDRAIAH M, PANDA P K. Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1−xAx) (Ti0.98Zr0.02)O3 lead-free piezo ceramics[J]. Ceram Int, 2015, 41(6): 8040–8045.
[16] SUN H, WANG X, YAO X. Effect of WO3 doping on dielectric and ferroelectric properties of 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 ceramics[J]. Ceram Int, 2012, 38: S373–S377.
[17] PRADO–ESPINOSA A, CAMARGO J, DEL CAMPO A, et al. Exploring new methodologies for the identification of the morphotropic phase boundary region in the (BiNa)TiO3–BaTiO3 lead free piezoceramics: Confocal Raman Microscopy[J]. J Alloys Compd, 2018, 739: 799–805.
[18] LI F, CHEN G, LIU X, et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3– BaTiO3–(Sr0.7Bi0.2□0.1)TiO3 ceramics[J]. J Eur Ceram Soc, 2017, 37(15): 4732–4740.
[19] XING L, ZHAI J, BO S, et al. Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3 -based incipient piezoelectric ceramics[J]. J Eur Ceram Soc, 2016, 37(4): 1437–1447.
[20] YU Z, LIU Y, SHEN M, et al. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3 –Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics[J]. Ceram Int, 2017, 43(10): 7653–7659.
[21] RASHAD Z, FETEIRA A. Temperature stable electric field-induced strain in Er-doped BNT–BT–BKT ceramics[J]. Mater Lett, 2018, 222: 180–182.
[22] HAO J, XU Z, CHU R, et al. Field-induced large strain in lead-free (Bi0.5Na0.5)1−xBaxTi0.98(Fe0.5Ta0.5)0.02O3 piezoelectric ceramics[J]. J Alloys Compd, 2016, 677: 96–104.
[23] LI L, HAO J, XU Z, et al. Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics[J]. Ceram Int, 2016, 42(13): 14886–14893.
[24] OBILOR U, PASCUAL–GONZALEZ C, MURAKAMI S, et al. Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT–BT–BKT piezoceramics[J]. Mater Res Bull 2018, 97: 385–392.
[25] LIU X, TAN X. Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics[J]. Adv Mater, 2016, 28(3): 574–578.
[26] PAL V, KUMAR A, THAKUR O P, et al. Preparation, microstructure and relaxor ferroelectric characteristics of BLNT–BCT lead-free piezoceramics[J]. J Alloys Compd, 2017, 714: 725–735.
[27] XU J, LI Q, YANG L, et al. Effects of thermal and electrical histories on structure and dielectric behaviors of (Li0.5Nd0.5)2+-modified (Bi0.5Na0.5)TiO3–BaTiO3 ceramics[J]. J Mater, 2016, 3(2): 121–129
[28] GAJULA G R, CHIDAMBARA KUMAR K N, BUDDIGA L R, et al. Dielectric and impedance properties of Li0.5Fe2.5O4 doped BaTiO3 composite ceramics[J]. Results Phys, 2018, 11: 899–904
[29] JIA W, HOU Y, ZHENG M, et al. High-temperature dielectrics based on (1–x)(0.94Bi0.5Na0.5TiO3–0.06BaTiO3)–xNaNbO3 system[J]. J Alloys Compd, 2017, 724: 306–315.
|