[1]VANHOOF V, VAN DE ABEELE L, BUEKENHOUDT A, et al. Economic comparison between azeptropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol[J]. Sep Purif Technol, 2004, 37: 33–49.
[2]LIN Y S. Microporous and dense inorganic membranes: current status and prospective[J]. Sep Purif Technol, 2001, 25: 39–55.
[3]CHAPMAN P D, OLIVEIRA T, LIVINGSTON A G, et al. Membranes for the dehydration of solvents by pervaporation[J]. J Membr Sci, 2008, 318: 5–37.
[4]HASEGAWA Y, ABE C, NISHIOKA N, et al. Influence of synthesis gel composition on morphology, composition, and dehydration performance of CHA-type zeolite membranes[J]. J Membr Sci, 2010, 363: 256–264.
[5]CUI Y, KITA H, OKAMOTO K I. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. J Membr Sci, 2004, 236: 17–27.
[6]MORIGAMI Y, KONDO M, ABE J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Sep Purif Technol, 2001, 25: 251–260.
[7]WANG J C, YE P, GAO X C, et al. Modeling investigation of geometric size effect on pervaporation dehydration through scaled-up hollow fiber NaA zeolite membranes[J]. Chin J Chem Eng, 2018, 26: 1477–1484.
[8]SCHERZER J. The preparation and characterization of aluminum deficient zeolites[J]. Catal Mater, 1984, 248: 157–200.
[9]JIANG J, WANG X R, PENG L, et al. Batch-scale preparation of hollow fiber supported CHA zeolite membranes and module for solvents dehydration[J]. Micropor Mesopor Mater, 2017, 250: 18–26.
[10]HU N, LI Y Q, ZHONG S L, et al. Fluoride-mediated synthesis of high-flux chabazite membranes for pervaporation of ethanol using reusable macroporous stainless steel tubes[J]. J Membr Sci, 2016, 510: 91–100.
[11]LUO Y W, LV Y J, KUMAR P, et al. Epitaxial growth: rapid synthesis of highly permeable and selective zeolite-T membranes[J]. J Mater Chem A, 2017, 5: 17828–17832.
[12]WANG R, MA N K, YAN Y S, et al. Ultrasonic-assisted fabrication of high flux T-type zeolite membranes on alumina hollow fibers[J]. J Membr Sci, 2018, 548: 676–684.
[13]LI Y Q, ZHU M H, HU N, et al. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures[J]. J Membr Sci, 2018, 564: 174–183.
[14]ZHANF Y Q, NAKASAKA Y, TAGO T, et al. Preparation and optimization of mordenite nanocrystal-layered membrane for dehydration by pervaporation[J]. Micropor Mesopor Mater, 2015, 207: 39–45.
[15]FU D L, SCHMIDT J E, PLETCHER P, et al. Uniformly oriented zeolite ZSM-5 membranes with tunable wettability on a porous ceramic[J]. Angew Chem Int Ed, 2018, 57: 12458–12462.
[16]JI M M, GAO X C, WANG X R, et al. An ensemble synthesis strategy for fabrication of hollow fiber T-type zeolite membrane modules[J]. J Membr Sci, 2018, 563: 460–469.
[17]CHEN X X, WANG J Q, YIN D H, et al. High performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method[J]. AIChE J, 2013, 59: 936–947.
[18]WANG X R, YANG Z Z, YU C L, et al. Preparation of T-type zeolite membranes using a dip-coating seeding suspension containing colloidal SiO2[J]. Micropor Mesopor Mater, 2014, 197: 17–25.
[19]ZHANG F, ZHENG Y H, HU L L, et al. Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media[J]. J Membr Sci, 2014, 456: 107–116.
[20]WANG Z Z, KUMAKIRI I, TANAKA K, et al. NaY zeolite membranes with high performance prepared by a variable-temperature synthesis[J]. Micropor Mesopor Mater, 2013, 182: 250–258.
[21]ZHANG X L, QIU L F, DING M Z, et al. Preparation of zeolite T membranes by a two-step temperature process for CO2 separation[J]. Ind Eng Chem Res, 2013, 52: 16364−16374.
[22]YIN X Y, CHU N B, LU X W, et al. Cost-effective two-stage varying-temperature rapid crystallization of zeolite T and SAPO-34[J]. J Cryst Growth, 2016, 441: 1–11.
[23]LI Y S, ZHANG X F, WANG J Q, et al. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Sep Purif Technol, 2001, 25: 459–466.
[24]KONG C L, LU J M, YANG J H, et al. Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis[J]. J Membr Sci, 2006, 285: 258–264.
[25]NAKRANI D, BELANI M, BAJAJ H C, et al. Concentrated colloidal solution system for preparation of uniform Zeolite-Y nanocrystals and their gas adsorption properties[J]. Micropor Mesopor Mater, 2017, 241: 274–284.
[26]OLEKSIAK M D, SOLTIS J A, CONATO M T, et al. Nucleation of FAU and LTA zeolites from heterogeneous aluminosilicate precursors[J]. Chem Mater, 2016, 28: 4906–4916.
[27]CUI Y, KITA H, OKAMOTO K I. Preparation and gas separation performance of zeolite T membrane[J]. J Mater Chem, 2004, 14: 924–932.
[28]ZHANG Q P, ZHOU Z H, WU H D, et al. Optimization of preparing zeolite T membranes from clear Solutions[J]. J Chin Ceram Soc, 2017, 45: 968–975.
[29]ZHOU H, LI Y S, ZHU G Q, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Sep Purif Technol, 2009, 65: 164–172.
[30]ZHOU R F, HU L L, ZHANG Y J, et al. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Micropor Mesopor Mater, 2013, 174: 81–89.
[31]HSU C Y, CHIANG A S T, SELVIN R, et al. Rapid synthesis of MFI zeolite nanocrystals[J]. J Phys Chem B, 2005, 109: 18804–18814.
[32]LI R, LINARES N, SUTJIANTO J G, CHAWLA A, et al. Ultrasmall zeolite L crystals prepared from highly-interdispersed alkali-silicate precursors[J]. Angew Chem Int Ed, 2018, 57: 11283–11288.
[33]KIM S D, NOH S H, PARK J W, et al. Organic-free synthesis of ZSM-5 with narrow crystal size distribution using two-step temperature process[J]. Micropor Mesopor Mater, 2006, 92: 181–188.
|