首页
期刊信息
编委及顾问
期刊发行
联系方式
使用帮助
常见问题
ENGLISH
位置:
首页
>> 正文
基于机器学习势函数的材料力热性质多尺度模拟研究进展
作者:
吴静
黄安
谢涵鹏
魏东海
李奥南
彭博
王慧敏
秦真真
刘德欢
秦光照
单位:
1.湖南大学机械与运载工程学院汽车车身先进设计制造国家重点实验室2.华中科技大学能源与动力工程学院3.湘潭大学物理与光电工程学院4.郑州大学物理学院(微电子学院)
关键词:
机器学习
原子相互作用势
多尺度
力热性质
分类号:
出版年,卷(期):页码:2023,51(2):531-543
DOI:10.14062/j.issn.0454-5648.20220826
摘要:
随着人工智能技术的发展,采用机器学习方法进行势函数的构建和拟合,成为目前解决经验势函数精度问题的主要技术途径。机器学习方法解决了传统势函数拟合中的试错低效问题,已成为材料设计和物性研究不可或缺的有力工具。本文围绕当前机器学习势函数的特点,及其在相变研究、本征性质研究和界面研究等方面的应用,全面总结介绍势函数及其拟合策略,以及其在特定物性研究中的应用,推动机器学习势函数在材料力热性质的多尺度模拟研究。最后,展望了机器学习势函数所面临的挑战和未来发展前景。
基金项目:
国家自然科学基金(52006057);国家自然科学基金(52076089); 湖南大学汽车车身先进设计制造国家重点实验室自主研究课题(52175013);
作者简介:
参考文献:
服务与反馈:
【
文章下载
】【
加入收藏
】
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号 邮政编码:100831
电话:010-57811253 57811254
E-mail:jccs@ceramsoc.com